
Alexandria Engineering Journal (2022) 61, 8069–8088
HO ST E D  BY

Alexandria University

Alexandria Engineering Journal

www.elsevier.com/locate/aej
www.sciencedirect.com
An improved metaheuristic method for simultaneous

network reconfiguration and distributed generation

allocation
* Corresponding author.

E-mail address: vndieu@hcmut.edu.vn (D. Ngoc Vo).

Peer review under responsibility of Faculty of Engineering, Alexandria

University.

https://doi.org/10.1016/j.aej.2022.01.056
1110-0168 � 2022 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Truong Hoang Bao Huy a, Thanh Van Tran a, Dieu Ngoc Vo b,c,*,

Ho Thi Thao Nguyen d
a Institute of Engineering and Technology, Thu Dau Mot University, Binh Duong Province, Viet Nam
bDepartment of Power Systems, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10,

Ho Chi Minh City, Viet Nam
cVietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
dFPT University, Hanoi, Viet Nam
Received 10 June 2021; revised 5 January 2022; accepted 20 January 2022
Available online 29 January 2022
KEYWORDS

Distributed generations;

Chaotic local search;

Network reconfiguration;

Radial distribution net-

works;

Search group algorithm
Abstract A new chaotic search group algorithm (CSGA) is proposed in this study for simultane-

ous network reconfiguration and allocation of distributed generation (SNR-DG) problem with the

objective of minimum real power loss in the radial distribution network (RDN). The CSGA is an

improved metaheuristic algorithm, in which a chaotic local search strategy is incorporated with the

original SGA, to enhance its search performance. The proposed CSGA was studied on 33-, 69-, 84-

and 118-bus RDNs with three load levels. After SNR-DG application, the voltage profile and real

power loss of the system had enhanced significantly. The outcomes yielded by CSGA were com-

pared with those obtained from the original SGA and other techniques depicted in the literature.

The comparative findings revealed that CSGA yielded better solution quality than SGA and other

techniques. Hence, CSGA is the best technique to address the SNR-DG problem in RDNs.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The radial distribution network (RDN) is integral in power
systems for transferring electricity to consumers. Nevertheless,
optimal RDN planning and operation appear to pose some
challenges to the planners and executioners [1]. Power loss

reduction (PLR) is one of the critical factors to optimally oper-
ate the system [2]. Apparently, the integration of simultaneous
network reconfiguration and distributed generation allocation

(SNR-DG) is effective in enhancing the performance of RDNs
[3]. Network reconfiguration (NR) refers to the status chang-
ing process of tie switches (typically opened) and sectionalizing
switches (typically closed) for optimum RDN restructuring.
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Meanwhile, escalating demand for electricity and cost-effective
generation, environmental concerns, and cutting-edge tech-
nologies have expanded distributed generations (DGs) integra-

tion. This approach has minimized operating costs,
transmission congestion, and system power loss; while enhanc-
ing voltage profile and reliability. However, studies pertaining

to NR and DG allocation have been in isolation, mainly
because the NR turns into a more intricate aggregation prob-
lem upon the incorporation of DGs allocation. However,

SNR-DG in RDN may address challenges and offer more
benefits.

Over the past two decades, many researchers have been
devoted to initiating a broad range of artificial intelligence

(AI), analytical, and metaheuristic approaches to address
NR problem [4]. Some analytical techniques proposed to
address NR are interchange switch [5], open-all switch [6],

and close-all switch [7] strategies. Despite the short computa-
tion time and easy implementation, these analytical
approaches failed to perform in large scale and intricate condi-

tions. As for the biological/physical-inspired AI and meta-
heuristic approaches, including particle swarm optimization
(PSO) [8], genetic algorithm (GA) [9], harmony search algo-

rithm (HSA) [10], fireworks algorithm (FWA) [11], and cuckoo
search algorithm (CSA) [12], which were proposed to solve NR
problem upon considering power quality and reliability based
objectives (e.g., power loss). In particular, metaheuristic tech-

niques have been reported to address the optimization prob-
lems with exceptional outcomes [13,14].

In recent years, DG units have been widely connected to

RDNs stemming from environmental concerns, electricity
deregulation, and fossil fuel depletion. Integration of DGs
has displayed significant impacts on RDN operation [15].

Despite their studies in isolation, simultaneous allocations of
both NR and DG may generate the sought solution [16]. An
improved equilibrium optimization algorithm (IEOA) has

been applied by Shaheen et al. [3] to handle the optimal incor-
poration of DG units and NR. The 33- and 69-bus networks
were deployed to validate the proposed approach at three load
levels, in which its superiority was verified. A big-bang crunch

algorithm [16] was initiated to solve multi-objective optimal
NR and DGs allocation in RDNs. Optimal DG locations were
omitted in the study. Next, Rao et al. [17] used an HSA-based

algorithm to overcome the NR issue in the presence of DGs for
PLR. The locations of DGs were identified based on the loss
sensitivity factor. In another study, PSO and grey wolf opti-

mizer were combined to solve NR with DGs installation in
large-scale networks [18]. Mohamed et al. [19] formulated an
FWA to enhance voltage stability and PLR based on NR
and DGs installation, whereby buses with the least voltage sta-

bility index were selected for DGs allocation. Meanwhile, an
adaptive CSA [20] successfully solved NR with a DG place-
ment to decrease both voltage stability index and power loss.

In the study, radial network constraint was determined based
on graph theory. A shuffled frogs leaping method was
deployed Onlam et al. [21] to seek optimal NR, as well as

DGs sizes and locations, for 33- and 69-bus systems for several
case studies with two objectives: better voltage profile and
lower system loss. Next, an electromagnetism-based approach

was implemented for NR with DG placement to maximize
PLR [22]. Tolabi et al. [23] applied a hybrid fuzzy-bees
approach to handle multi-objective NR with DGs allocation
to enhance feeder load balance and voltage profile while max-
imizing PLR. The HSA-PSO hybrid approach was deployed in
an artificial bee colony to overcome the NR and placements of
DGs and shunt capacitors for PLR maximization [24]. To

achieve power loss minimization, a modified plant growth sim-
ulation algorithm had been proposed for NR with DGs [25],
whereby DGs positions were found based on sensitivity analy-

sis. A heuristic method was proposed by Bayat et al. [26] for
NR and DGs placement to decrease losses. A sine-cosine algo-
rithm, in combination with levy flights, was proposed to

address NR with DGs integration in 33- and 69-bus RDNs
to lower voltage stability index and power loss [27]. The simul-
taneous optimal NR and DGs output were solved using the
firefly (FF) method in [28] for 33-, 69-, and 118-bus systems.

In fact, only a handful of studies have looked into NR and
DGs installation as a combinational optimization problem.
Moreover, most previous studies have not investigated the

SNR-DG problem on a large-scale RDN. The SNR-DG is
effective to enhance the reliability, performance, and quality
of RDNs. As the combined problem may comprise of multiple

variables and constraints, it is crucial to develop a method that
can effectively address the intricate optimization problem.

Search group algorithm (SGA) has been developed by

Goncalves et al. [29], which is a promising optimization
method. For benchmark problems in topology optimization,
SGA has proven better performance than genetic algorithm
(GA), particle swarm algorithm (PSO), harmony search

(HS) and firefly algorithm (FA) [29]. Since SGA has stochas-
tic nature, it may get stuck in the local optimum and converge
prematurely. To overcome the above disadvantages, chaos-

based search algorithms have been developed in the literature.
Chaotic search strategy has been integrated into many meta-
heuristic optimization algorithms such as cuckoo search (CS)

[30,31], krill herd (KH) [32,33], symbiotic organisms search
(SOS) [34,35], antlion optimizer (ALO) [36] to enhance the
overall search performance of such algorithms. Due to their

randomness, non-repetitive and ergodicity nature, chaotic
sequences can obtain high effectiveness in the local optimiza-
tion [35].

Having the above mentioned, this present study proposes a

new chaotic search group algorithm (CSGA) to address the
SNR-DG problem. It is noteworthy to highlight that the
SNR-DG problem is indeed a critical challenge stemming from

its intricate, large scale, and non-linear nature. The primary
goal of this SNR-DG is PLR while being subjected to several
constraints of system operations including radial configuration

and bus voltage limitations, power balance, as well as DG and
feeder capacity limits. In the proposed CSGA, a chaotic local
search (CLS) strategy was deployed to enhance accuracy and
convergence speed, while avoiding local trapping. The CSGA

was tested on IEEE 33-, 69-, 84-, and 118-bus RDNs with
three load levels. Later, the CSGA outcomes were compared
with findings retrieved using other techniques outlined in the

literature to confirm its superiority in handling the SNR-DG
problem.

The key contributions of the present work can be outlined

as follows:

� A new CSGA was developed by integrating the CLS strat-

egy into the original SGA.
� The proposed CSGA was successfully applied to the SNR-
DG problem in 33-, 69-, 84-, and 118-bus RDNs under
three load levels.
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� Analysis results indicated that the implementation of SNR-

DG has effectively improved the power losses and voltage
profiles of systems. For 33-, 69-, 84-, and 118-bus RDNs,
CSGA yielded power loss reductions at nominal load con-

dition of 73.1204%, 84.2867%, 35.6577%, and 64.0171%,
respectively.

� The comparative yields revealed the superiority of CSGA to
other algorithms for solution quality for all case studies. As

for the 118-bus large-scale RDN at normal load level,
CSGA obtained the best real power loss (467.0906 kW) in
comparison to SGA (742.9589 kW), moth search

(644.3031 kW), monarch butterfly optimization
(853.5588 kW), and ant colony optimization
(854.8006 kW).

This paper is organized as given in the following: Section 2
outlines the SNR-DG formulation, while the proposed CSGA
is described in Section 3. Section 4 depicts CSGA deployment

to the SNR-DG problem. Sections 5 and 6 present the simula-
tion outcomes and the study conclusions, respectively.

2. Problem formulation

The objective function (OF) of the SNR-DG problem is to
minimize real power loss (PL) in RDN while sustaining all con-

straints. The SNR-DG problem is expressed below:

OF ¼ MinðPLÞ ¼ Min
XNL

k¼1

RkI
2
k

 !
ð1Þ

where Rk denotes the resistance of kth branch, Ik signifies the
current passing through that branch, whereas NL represents

the number of branches in RDN.
The OF is subjected to the operational constraints outlined

as follows:

i. Power balance: both real and reactive powers of the sys-
tem must be balanced:

P þ
XNDG

P ¼
XNB

P þ
XNL

P ð2Þ
Slack

i¼1

DG;i

j¼1

D;j

k¼1

L;k

QSlack þ
XNDG

i¼1

QDG;i ¼
XNB

j¼1

QD;j þ
XNL

k¼1

QL;k ð3Þ

where PSlack and QSlack refer to active and reactive power out-

puts of slack bus, respectively; PDG,i and QDG,i denote active
and reactive power outputs of ith DG unit, respectively; NDG

reflects the total number of DG units to be connected; PD,j

and QD,j signify active and reactive power demands at jth

bus, respectively; NB represents the total number of buses;
while PL,k and QL,k depict active and reactive power losses

in kth branch, respectively.

ii. Bus voltage limits: The bus voltage is bound by lower

and upper limits:

Vmin;i 6 Vi 6 Vmax;i; i ¼ 1; :::;NB ð4Þ
where Vmin,i and Vmax,i refer to voltage limits at the ith bus.
iii. Feeder capacity limits: Flow of current in transmission

lines must be below the maximum value:

Ikj j 6 Imax;k

�� ��; k ¼ 1; :::;NL ð5Þ
where Imax,k signifies the permissible maximum flow of current

through kth branch.

iv. DG capacity limits: The DG capacity is bound by its

lower and upper limits:

PDGmin;i 6 PDG;i 6 PDGmax;i; i ¼ 1; :::;NDG ð6Þ
where PDGmin,i and PDGmax,i reflect the limited sizes of ith DG.

v. DG penetration limits: The DGs penetration level to the
RDN should be bound by lower and upper limits [19]:

0:1�
XNB

P 6
XNDG

P 6 0:6�
XNB

P ð7Þ

j¼2

D;j

i¼1

DG;i

j¼2

D;j

vi. Radial configuration constraint: Distribution network
must ascertain radial configuration and serve all loads

after reconfiguration [37,38]:

detðAÞ ¼ 1 or � 1 ðradial systemÞ�
ð8Þ
0 ðnot radialÞ
where A is the branch-bus incidence matrix in RDN. Aij = 1/-1
if ith branch is linked from/to jth bus, otherwise Aij = 0.
3. Chaotic search group algorithm

The CSGA refers to the enhanced version of the original SGA
embedded with a chaotic local search approach. In CSGA, the

chaotic local search facilitates the algorithm in exploiting the
best solution vicinity to enhance exploitability. By using the
chaotic local search strategy, CSGA reaches optimum solution

faster and generates better solution quality in solving optimiza-
tion problems.

3.1. Search group algorithm

The SGA is a metaheuristic optimization algorithm proposed
in [29]. The SGA offers an exceptional balance between
exploitation and exploration of the design domain. During ini-

tial optimization iterations, SGA seeks promising areas in the
domain (exploration). In the following iterations, SGA seeks
the best solution in every promising area (exploitation). Pertur-

bation constant (a) refers to the parameter that controls the
SGA optimization process, while the mutation step creates
new solutions for the current search group. The new solutions

are created by a few individuals from the population known as
the search group.

First, an initial population is created in a random manner.
The population of npop individuals in SGA is represented by

P ¼ ½P1; :::;Pnpop �T. Next, all individuals of the population are

assessed, wherein ng individuals are selected from population
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P to generate a search group R via standard tournament selec-
tion. The search group is mutated at each iteration to enhance
SGA global searchability, in which new individuals substitute

the nmut search group members, as given in the following:

xj;mut ¼ E½R:;j� þ ter½R:;j�; for j ¼ 1; :::; n; ð9Þ

where xj,mut refers to jth variable of a mutated individual, E and
r denote mean value and standard deviation operators, e signi-
fies a convenient random variable, t controls the extent of new
individual creation, R:,j indicates jth column of search group
matrix, and n signifies the number of design variables. Search
Fig. 1 Pseudocod
group member replacement probability is dictated by the

search group rank aided by inverse tournament selection.
Once the search group is generated and mutated, every

search group member generates a family with the following

perturbation:

xj;new ¼ Rij þ a; for j ¼ 1; :::; n; ð10Þ

in which a controls perturbation size. At each iteration of the
optimization procedure, SGA is characterized by a decrease in
perturbation. The parameter a is updated as below:
e of the SGA.
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amþ1 ¼ bam ð11Þ
where m signifies iteration, while b denotes an SGA parameter.

The minimum value for ak is as follows: if am < amin, then
am = amin. A prominent feature of SGA refers to the creation
of more individuals with better search group member quality.

Lastly, the best member from each family at the global stage
generates the new search group. Nevertheless, the selection
scheme is adjusted at the local stage, whereby the best ng indi-

viduals from all families create a new search group to exploit
the area in the current best design. Fig. 1 presents the pseu-
docode of the SGA.
Fig. 2 Pseudocode of the CSGA.
3.2. Proposed chaotic search group algorithm

In this study, the chaotic sequences are incorporated into the
CSGA to enhance CSGA search performance and to hinder
CSGA from getting stuck in local optimization. The proposed

CSGA has two optimization stages. The original SGA is
deployed to determine the best solutions in the design domain
at the initial stage. Next, a chaotic local search is executed to
better exploit the best solutions. The piecewise linear chaotic

map (PLCM) was employed to yield the chaotic sequence.
The following expresses the initial chaotic sequence variable:

Z0 ¼ randð0; 1Þ ð12Þ
The next variables of the chaotic sequence based on PLCM

are mathematically defined in the following equations [39]:

Zkþ1 ¼
Zk

p
Zk 2 ð0; pÞ

ð1�ZkÞ
ð1�pÞ Zk 2 ðp; 1Þ

(
ð13Þ

where Zk 2 ð0; 1Þ 8k 2 f0; 1; 2; :::g and p 2 ð0; 0:5�.
The chaotic local search is integrated to accelerate the

search process for the existing search group members to create

better solutions. A new solution is created from the current
member of the search group based on the following equation
[34]:

Xik;new ¼ Xik þ rð2Zk � 1Þ ð14Þ
where Xik,new refers to the new solution position generated
from chaotic local search at kth iteration; Xik reflects ith mem-

ber position in the search group at kth iteration, and Zk

denotes chaotic variable at kth iteration.
The chaotic search radius (r) is determined first and

updated in the next iterations, as follows [39]:

r ¼ ðXmax � XminÞ=2 ð15Þ

rkþ1 ¼ randð0; 1Þ � rk ð16Þ
Xik;new will substitute Xik in the search group if the value of

its OF value is better than that of Xik. The chaotic local search
is executed until maximum iterations of chaotic local search

(K) is retrieved.
A detailed outline of the CSGA is defined in Fig. 2.

4. Implementation of CSGA to SNR-DG problem

4.1. Initialization

In CSGA, the initial population is signified by

P ¼ ½P1; :::;Pnpop �T, where each individual Pi (i = 1, . . ., npop)

includes control variables of opened switches, positions and
capacities of DG units:

Pi ¼ SW1; :::;SWNSW
;LDG;1; :::;LDG;NDG

;PDG;1; :::;PDG;NDG
½ �

ð17Þ
Each individual of the initial population is randomly gener-

ated within the boundaries:

SWi ¼ round SWmin;i þ randð0; 1Þ � ðSWmax;i � SWmin;iÞ½ �; i ¼ 1; :::;NSW

ð18Þ

LDG;i ¼ round LDGmin;i þ randð0; 1Þ � ðLDGmax;i � LDGmin;iÞ½ �; i ¼ 1; :::;NDG

ð19Þ
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PDG;i ¼ PDGmin;i þ randð0; 1Þ � ðPDGmax;i � PDGmin;iÞ; i ¼ 1; :::;NDG

ð20Þ

where NSW indicates the total number of opened switches.
4.2. Objective function value

The OF value for each individual of CSGA is calculated as
follows:

FT ¼ OFþ KP

XNB

i¼1

ðVi � Vlim
i Þ2 þ KP

XNL

k¼1

ðIk � Ilimk Þ2

þ KPðPEDG � PElim
DGÞ

2 ð21Þ

in which KP represents penalty constants for inequality con-

straint violations. If the dependent variables (bus voltages, fee-
der capacity, and DGs penetration) violate the constraints, a
Fig. 3 The IEEE

Table 1 Optimal results of CSGA and SGA for 33-bus RDN at th

Methods Item Load level

Light (0.5) Nor

Base case Opened switches 33-34-35-36-37 33-3

PL (kW) 47.07 202

Vmin (p.u) 0.9583 0.91

SGA Opened switches 8-11-27-32-33 10-2

PDG (MW)/(Bus) 0.2199/ (7)0.3391/ (15)0.5555/ (30) 0.81

PL (kW) 14.4566 56.5

PLR (%) 69.2875 72.0

Vmin (p.u) 0.9851 0.96

CSGA Opened switches 7-9-14-27-31 7-9-

PDG (MW)/(Bus) 0.2384/ (12)0.3042/ (18)0.5720/ (29) 0.46

PL (kW) 13.5232 54.4

PLR (%) 71.2704 73.1

Vmin (p.u) 0.9867 0.96
method is applied to adjust the variables towards to their

bound:

xlim ¼
xmin if x < xmin

xmax if x > xmax

x otherwise

8><
>: ð22Þ

in which x indicates the Vi, Ik, and PEDG values; xlim indicates
the limitations of Vi, Ik, and PEDG.

4.3. Overall procedure

The CSGA deployment for the SNR-DG problem may be out-
lined as given below:

Step 1: Set initial parameters of CSGA (npop, ng, nmut, a,
maxIter, and K).
33-bus RDN.

ree load levels.

mal (1) Heavy (1.6)

4-35-36-37 33-34-35-36-37

.66 575.31

31 0.8529

8-30-33-34 10-28-30-33-34

54/ (18)0.8718/ (25)0.5419/ (26) 0.7324/ (8)1.5028/ (18)1.3312/ (29)

589 152.5012

941 73.4947

18 0.9500

14-28-30 7-9-14-27-31

97/ (12)1.0213/ (25)0.7380/ (33) 0.7722/ (12)1.8453/ (29)0.9489/ (33)

788 146.8374

204 74.4791

77 0.9571
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Step 2: Initialize population P as in Section 4.1. Calculate

OF values for P using equation (21);
Step 3: Select ng best solutions from P to form the initial
search group Rm. Set Iter = 0;

Step 4: Set Iter = Iter + 1;
Step 5: Implement mutation phase for nmut individuals
based on equation (9);
Step 6: Generate families (Fi) for each search group member

based on equation (10);
Step 7: Perform new search group selection in the following
manner:

Global stage: choose best solutions of each family to form
search group Rm+1;
Local stage: choose best ng solutions from all families to

form search group Rm+1.
Step 8: Perform the chaotic local search approach to get the
best members for the search group;
Step 9: Update am+1 based on equation (11);

Step 10: If Iter � maxIter, go to Step 11; if otherwise return
to Step 4.
Step 11: Solution found: x* = R1,:.

5. Simulation results

The proposed CSGA was tested on 33-, 69-, 84-, and 118-bus
RDNs to validate its performance. For 33- and 69-bus RDNs,
the bus voltage limits were set at 0.95–1.05p.u., while 3 DGs

were used with their size ranging at 0–3 kW for DGs distribu-
tion. For 84- and 118-bus RDNs, the bus voltage was limited
from 0.90p.u. to 1.10p.u., while the system had 5 DGs (for 84-

bus RDN) and 7 DGs (for 118-bus RDN) with their sizes from
0 to 5 kW. In this study, three load levels were investigated for
the SNR-DG problem: light load level (0.5), normal load level
(1.0), and heavy load level (1.6). The CSGA was developed in

the MATLAB R2019b. The control parameters of the CSGA
included population size (npop), number of search group mem-
Fig. 4 Real power loss of 33-bus RDN before and after SNR-

DG at three load levels.
ber (ng), number of mutations (nmut), perturbation factor (a),
maximum number of iterations (maxIter), and maximum iter-
ations of chaotic local search (K), which were set as follows:

npop = 50 and ng = 10 (for 33-, 69-bus, 84-bus RDNs),
npop = 200 and ng = 40 (for 118-bus RDN), nmut = 3,
a = 2, maxIter = 200, and K = 10. For each case, the CSGA

was run independently 30 times. Furthermore, Matpower 6.0
was employed to compute power flow analysis. For compar-
ison of results, the original SGA, moth search (MS) [40], mon-

arch butterfly optimization (MBO) [41], and ant colony
optimization (ACO) [42] were also deployed to deal with the
same problem using the same population size and maximum
number of iterations as CSGA.
Fig. 5 Voltage profiles of 33-bus RDN at three load levels.
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5.1. 33-bus RDN

The IEEE 33-bus RDN refers to a small-scale network with 37
branches, 5 opened switches, and 32 closed switches [43]. The
Fig. 6 Convergence characteristics of CSGA an

Table 2 Comparative results of CSGA and other methods for 33-b

Loading level Items Opened switches

Light loading level Base case 33-34-35-36-37

CSGA 7-9-14-27-31

SGA 8-11-27-32-33

MS 11-28-30-33-34

MBO 10-14-25-33-34

ACO 10-27-31-33-34

EOA [3] 6-28-34-35-36

IEOA [3] 8-28-32-33-34

HSA [17] 7-10-14-28-32

FWA [19] 7-10-14-28-32

ISCA [27] 7-10-14-28-31

Normal loading level Base case 33-34-35-36-37

CSGA 7-9-14-28-30

SGA 10-28-30-33-34

MS 8-9-27-31-33

MBO 7-28-32-33-34

ACO 11-27-31-33-34

EOA [3] 8-27-33-34-36

IEOA [3] 7-10-13-27-31

HSA [17] 4-7-10-28-32

GA [17] 7-10-28-32-34

RGA [17] 7-9-12-27-32

FWA [19] 7-11-14-28-32

ISCA [27] 7-9-14-28-31

FF [28] 8-9-28-32-33

Heavy loading level Base case 33-34-35-36-37

CSGA 7-9-14-27-31

SGA 10-28-30-33-34

MS 7-10-13-27-30

MBO 7-10-14-27-36

ACO 8-27-31-33-34

EOA [3] 11-14-28-31-33

IEOA [3] 7-9-14-26-31

HSA [17] 7-10-14-28-32

FWA [19] 7-10-14-28-32

ISCA [27] 7-9-14-28-31
total load demand of the network was 3.72 MW and 2.30
MVAr, while the nominal voltage of the network was
12.66 kV at normal load level. The initially opened switches

were 33-34-35-36-37. Fig. 3 illustrates the diagram of the 33-
bus RDN.
d SGA for 33-bus RDN at three load levels.

us RDN at three load levels.

Sum PDG (MW) PL (kW) PLR (%)

– 47.068 –

1.1145 13.5232 71.2704

1.1145 14.4566 69.2875

1.1133 14.1725 69.8912

1.0000 19.4429 58.6944

1.0831 14.0210 70.2129

1.114 15.17 67.76

1.106 14.51 69.17

0.8898 17.78 62.22

0.8607 16.22 65.53

0.7867 16.24 65.49

– 202.66 –

2.2289 54.4788 73.1204

2.2289 56.5589 72.0941

2.2288 58.8080 70.9844

2.1662 69.5086 65.7047

2.1478 57.8477 71.4582

2.229 61.48 69.66

2.228 57.40 71.67

1.6684 73.05 63.95

1.9633 75.13 62.92

1.774 74.32 63.33

1.6841 67.11 66.89

1.6912 66.81 67.03

1.7738 73.95 63.51

– 575.31 –

3.5664 146.8374 74.4791

3.5664 152.5012 73.4947

3.5316 162.6813 71.7254

3.0000 183.5448 68.0992

3.5579 156.3699 72.8223

3.552 152.26 73.54

3.566 148.42 74.19

2.7529 194.22 66.23

2.7529 172.97 69.93

2.9812 167.96 70.81



Fig. 7 The IEEE 69-bus RDN.

Table 3 Optimal results of CSGA and SGA for 69-bus RDN at three load levels.

Methods Item Load level

Light (0.5) Normal (1) Heavy (1.6)

Base case Opened switches 69-70-71-72-73 69-70-71-72-73 69-70-71-72-73

PL (kW) 51.61 225 652.53

Vmin (p.u) 0.9567 0.9092 0.8445

SGA Opened switches 12-18-58-62-69 13-56-61-69-70 19-55-62-69-71

PDG (MW)/(Bus) 0.1755/ (12)0.2675/ (23)0.6976/ (61) 0.3087/ (21)0.3570/ (27)1.4343/ (61) 0.8955/ (21)2.2754/ (61)0.4792/ (64)

PL (kW) 9.1832 38.2621 107.7553

PLR (%) 82.2053 82.9946 83.4864

Vmin (p.u) 0.9899 0.9813 0.9674

CSGA Opened switches 14-57-61-69-70 14-55-61-69-70 14-58-61-69-70

PDG (MW)/(Bus) 0.6966/ (61)0.2338/ (64)0.2102/ (66) 0.4062/ (12)1.4004/ (61)0.4746/ (64) 2.2330/ (61)0.7557/ (64)0.6613/ (66)

PL (kW) 8.7340 35.3549 93.1537

PLR (%) 83.0757 84.2867 85.7241

Vmin (p.u) 0.9904 0.9806 0.9683

Fig. 8 Real power loss of 69-bus RDN before and after SNR-

DG at three load levels.
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Table 1 tabulates the outcomes obtained from CSGA and
SGA for the three load levels. As for the base case, the real
power loss of the system at light, nominal, and heavy load

levels were 47.07 kW, 202.66 kW, and 575.31 kW, respectively.
After the SNR-DG implementation, the power loss from the
base case decreased to 13.5232 kW, 54.4788 kW, and
146.8374 kW, corresponding to PLR at 71.2704%,

73.1204%, and 74.4791% at light, normal, and heavy load
levels, respectively. Fig. 4 depicts the real power loss of 33-
bus RDN before and after SNR-DG implementation. Fig. 5

portrays the voltage profiles of all load levels. Apparently,
the minimum voltage magnitude had enhanced from
0.9583p.u., 0.9131p.u., and 0.8529p.u. (base case) to 0.9867p.

u., 0.9677p.u., and 0.9571p.u. at light, normal, and heavy load
levels, respectively. Hence, the SNR-DG implementation using
CSGA had significantly impacted PLR and voltage profile

enhancement of the system. Referring to Table 1, the real
power loss portrayed by CSGA had been respectively lower
than that from SGA for all load levels. As depicted in
Fig. 6, the convergence characteristics of CSGA were better
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than those of SGA for all load levels. Hence, CSGA displayed
better performance than the original SGA for solution quality.

Table 2 presents the comparison of outcomes obtained

from the proposed CSGA with other methods at all load
Fig. 9 Voltage profiles of 69-b
levels. At light load level, the CSGA recorded optimal opened
switches (7-9-14-27-31), while the positions to install the DGs
were at buses 12, 18, and 29 with sizes of 0.2384 MW,

0.3042 MW, and 0.5720 MW. CSGA offered minimum power
us RDN at three load levels.
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loss (13.5232 kW) in comparison to other techniques. At nor-
mal load level, the CSGA optimized the system with opened
switches (7-9-14-28-30), whereas the positions of DGs were

at buses 12, 25, and 33 with sizes of 0.4697 MW,
1.0213 MW, and 0.7380 MW. The CSGA gave the best out-
come with the lowest power loss (54.4788 kW), in comparison
Fig. 10 Convergence characteristics of CSGA a

Table 4 Comparisons of CSGA and other methods for 69-bus RD

Loading level Items Opened switches

Light loading level Base case 69-70-71-72-73

CSGA 14-57-61-69-70

SGA 12-18-58-62-69

MS 10-12-56-64-70

MBO 13-25-56-69-70

ACO 10-13-55-61-71

EOA [3] 12-55-62-69-70

IEOA [3] 12-55-62-69-70

HSA [17] 10-14-16-56-62

FWA [19] 13-56-63-69-70

ISCA [27] 12-17-57-62-69

Normal loading level Base case 69-70-71-72-73

CSGA 14-55-61-69-70

SGA 13-56-61-69-70

MS 9-13-18-57-61

MBO 13-57-62-69-70

ACO 14-54-63-69-70

EOA [3] 12-18-56-63-69

IEOA [3] 10-13-57-61-70

HSA [17] 13-17-58-61-69

GA [17] 10-15-45-55-62

RGA [17] 10-14-16-55-62

FWA [19] 13-55-63-69-70

ISCA [27] 12-19-57-63-69

FF [28] 12-19-57-61-69

Heavy loading level Base case 69-70-71-72-73

CSGA 14-58-61-69-70

SGA 19-55-62-69-71

MS 12-14-56-63-69

MBO 14-55-69-70-73

ACO 16-57-63-69-71

EOA [3] 10-17-45-55-61

IEOA [3] 10-12-13-57-62

HSA [17] 10-13-18-58-61

FWA [19] 13-57-63-69-70

ISCA [27] 14-55-62-69-70
to SGA, MS, MBO, ACO, EOA [3], IEOA [3], HSA [17], GA
[17], RGA [17], FWA [19], ISCA [27], and FF [28] at normal
load level. At heavy load level, the CSGA offered NR with

opened switches (7-9-14-27-31), wherein the DGs were con-
nected to the positions at buses 12, 29, and 33 with sizes of
0.7722 MW, 1.8453 MW, and 0.9489 MW. The CSGA
nd SGA for 69-bus RDN at three load levels.

N at three load levels.

Sum PDG (kW) PL (kW) PLR (%)

- 51.61 -

1.1406 8.7340 83.0757

1.1406 9.1832 82.2053

1.1181 10.1225 80.3851

1.0000 11.9662 76.8126

1.0806 9.7316 81.1427

0.970 9.4497 81.76

1.098 9.03737 81.83

1.0021 11.07 78.55

0.9399 9.58 81.43

0.9721 10.02 80.58

– 225 –

2.2813 35.3549 84.2867

2.1001 38.2621 82.9946

2.2813 39.9384 82.2496

2.0969 45.4028 79.8210

2.2186 38.0079 83.1076

2.263 37.5495 83.31

1.831 36.3986 83.82

1.8718 40.3 82.08

2.0292 46.5 73.38

2.0654 44.23 80.32

1.8181 39.25 82.55

1.8731 39.73 82.34

1.9371 40.3 82.08

– 652.53 –

3.6500 93.1537 85.7241

3.6500 107.7553 83.4864

3.3162 106.9845 83.6046

3.0000 128.6349 80.2866

3.6272 106.3824 83.6968

3.649 106.074 83.736

3.649 100.4148 84.6

3.3828 104.67 83.96

2.9613 102.97 84.21

2.7449 104.5 83.92
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attained better outcomes than the rest of the techniques for the
heavy load level. Hence, the proposed CSGA offered excep-
tional solution quality for 33-bus RDN.
Fig. 11 The IEEE 84-bus RDN.

Table 5 Optimal results of CSGA and SGA for 84-bus RDN at th

Methods Item Load level

Light (0.5) Norm

Base

case

Opened

switches

84-85-86-87-88-89-90-91-92-93-94-

95-96

84-85

95-96

PL (kW) 127.21 531.9

Vmin (p.u) 0.9657 0.928

SGA Opened

switches

6-32-39-41-54-64-72-81-86-88-89-

90-94

7-14-

88-90

PDG (MW)/

(Bus)

1.6953/ (8)2.0434/ (20)1.9392/ (29) 4.136

PL (kW) 84.8942 365.0

PLR (%) 33.2655 31.38

Vmin (p.u) 0.9748 0.951

CSGA Opened

switches

34-39-62-72-81-84-85-86-88-89-90-

92-95

7-33-

91-92

PDG (MW)/

(Bus)

1.5615/ (7)1.5374/ (65)1.5678/ (84) 3.251

PL (kW) 81.5048 342.2

PLR (%) 35.9299 35.65

Vmin (p.u) 0.9773 0.956
5.2. 69-bus RDN

The IEEE 69-bus RDN denotes a medium-scale network with
73 branches, 5 opened switches, and 68 closed switches. The
total load demand is 3.80 MW and 2.69 MVAr with a nominal

voltage of 11.4 kV at normal load level. The branch and load
data of this network are given in [43]. The initially opened
switches were 69-70-71-72-73. Fig. 7 presents the diagram of
the 69-bus RDN.

Table 3 tabulates the outcomes retrieved by CSGA and
SGA for 69-bus RDN at three load levels. The base cases at
light, normal, and heavy load levels had real power loss of
ree load levels.

al (1) Heavy (1.6)

-86-87-88-89-90-91-92-93-94- 84-85-86-87-88-89-90-91-92-93-94-

95-96

9 1446.50

5 0.8787

32-34-37-42-55-63-72-83-86- 7-32-34-38-41-62-72-82-84-86-88-

89-90

8/ (20)2.6015/ (33)3.1325/ (80) 4.9367/ (20)3.3531/ (29)4.0494/ (54)

227 948.5959

60 34.4212

7 0.9222

39-42-61-70-84-86-88-89-90- 39-41-55-81-85-86-87-88-89-90-92-

94-96

2/ (54)3.6341/ (72)3.5853/ (80) 5.0000/ (7)4.1286/ (72)4.6996/ (84)

977 937.4880

77 35.1891

1 0.9215

Fig. 12 Real power loss of 84-bus RDN before and after SNR-

DG at three load levels.
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51.61 kW, 225 kW, and 652.53 kW, which decreased to
8.7340 kW, 35.3549 kW, and 93.1537 kW, respectively. The
corresponding PLR values were 83.0757%, 84.2867%, and
Fig. 13 Voltage profiles of 84-b
85.7241% for light, normal, and heavy load levels. Fig. 8 por-
trays the real power loss of the 69-bus system before and after
SNR-DG implementation using CSGA. Fig. 9 illustrates the
us RDN at three load levels.
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voltage profile of 69-bus RDN at three load levels. Referring
to Table 3 and Fig. 9, the minimum voltage magnitude
enhanced from 0.9567p.u., 0.9092p.u., and 0.8445p.u. (base

case) to 0.9904p.u., 0.9806p.u., and 0.9683p.u. at light, normal,
and heavy load levels, respectively. Therefore, CSGA applica-
tion for SNR-DG had successfully decreased real power loss

and enhanced system voltage profile. Moreover, Fig. 10 dis-
plays that the CSGA achieved better convergence than SGA
in all load levels.

Table 4 lists the comparative results between CSGA and the
other methods for 69-bus RDN at three load levels. At light
load level, CSGA optimized the NR with opened switches
(14-57-61-69-70), while installation of DGs at buses 61, 64,

and 66 with sizes of 0.6966 MW, 0.2338 MW, and
0.2102 MW, respectively. The real power loss achieved by
CSGA was 8.7340 kW – the lowest when compared to all

the other techniques (see Table 4). At normal load level, NR
was defined with opened switches 14-55-61-69-70, while the
DGs were connected to buses 12, 61, and 64 with sizes of

0.4062 MW, 1.4004 MW, and 0.4746 MW, respectively. The
CSGA recorded lower power loss (35.3549 kW) when com-
Fig. 14 Convergence characteristics of CSGA a

Table 6 Comparisons of CSGA and other methods for 84-bus RD

Loading level Items Opened switches

Light loading level Base case 84-85-86-87-88-89-90-91-92-

CSGA 34-39-62-72-81-84-85-86-88-

SGA 6-32-39-41-54-64-72-81-86-8

MS 33-53-72-82-84-85-86-88-89-

MBO 33-39-63-83-84-85-86-87-88-

ACO 36-42-54-64-80-85-86-87-88-

Normal loading level Base case 84-85-86-87-88-89-90-91-92-

CSGA 7-33-39-42-61-70-84-86-88-8

SGA 7-14-32-34-37-42-55-63-72-8

MS 7-34-38-40-54-61-72-76-83-8

MBO 36-54-70-81-85-86-88-89-90-

ACO 34-38-41-72-76-84-85-86-89-

Heavy loading level Base case 84-85-86-87-88-89-90-91-92-

CSGA 39-41-55-81-85-86-87-88-89-

SGA 7-32-34-38-41-62-72-82-84-8

MS 13-33-36-64-72-82-84-85-86-

MBO 33-39-55-76-81-85-86-87-89-

ACO 33-37-55-64-83-85-86-87-88-
pared with SGA, MS, MBO, ACO, EOA [3], IEOA [3], HSA
[17], GA [17], RGA [17], FWA [19], ISCA [27], and FF [28]
for this load level. At heavy load level, CSGA displayed opti-

mal NR with opened switches (14-58-61-69-70), whereas DGs
placement at buses 61, 64, and 66 with sizes 2.2330 MW,
0.7557 MW, and 0.6613 MW, respectively. The real power loss

recorded by CSGA was 93.1537 kW – the best yield among
other methods for heavy load level. Thus, CSGA proved sig-
nificantly superior performance to the other techinques for

69-bus RDN.
5.3. 84-bus RDN

The 84-bus RDN characterizes a practical distribution system
of the Taiwan Power Company with 96 branches, 13 opened
switches, and 83 closed switches [44]. At normal load level,
the total load demand is 28.35 MW and 20.70 MVAr, and

the nominal voltage of the system is 11.4 kV. The initially
opened switches were 84-85-86-87-88-89-90-91-92-93-94-95-
96. Fig. 11 shows the diagram of the 84-bus RDN.
nd SGA for 84-bus RDN at three load levels.

N at three load levels.

Sum PDG (MW) PL (kW) PLR (%)

93-94-95-96 - 127.21 -

89-90-92-95 4.6668 81.5048 35.9299

8-89-90-94 5.6779 84.8942 33.2655

90-92-93-95 5.1513 87.7448 31.0247

89-90-92-95 3.7281 91.8226 27.8192

89-90-92-94 4.7924 84.3741 33.6744

93-94-95-96 - 531.99 -

9-90-91-92 10.4706 342.2977 35.6577

3-86-88-90 9.8708 365.0227 31.3860

6-89-90-92 10.1316 372.7662 29.9304

92-94-95-96 15.0000 371.0536 30.2524

90-91-92-96 9.5284 360.1071 32.3100

93-94-95-96 - 1446.50 -

90-92-94-96 13.8282 937.4880 35.1891

6-88-89-90 12.3391 948.5959 34.4212

89-90-92-95 13.3035 963.2455 33.4084

90-92-95-96 15.0000 944.5001 34.7043

89-90-92-95 15 940.0672 35.0108
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Table 5 gives the results yielded by CSGA and SGA for dif-
ferent load levels. As for the base case at light, nominal, and
heavy load levels, the system had real power losses of

127.21 kW, 531.99 kW, and 1446.50 kW with minimum volt-
ages of 0.9657p.u., 0.9285p.u., and 0.8787p.u., respectively.
After optimization, the real power losses were reduced to

81.5048 kW (35.9299% PLR), 342.2977 kW (35.6577%
PLR), and 937.4880 kW (35.1891% PLR), respectively. Fur-
thermore, the minimum voltage magnitude had enhanced to

0.9773p.u., 0.9561p.u., and 0.9215p.u. at light, normal, and
heavy load levels, respectively. Fig. 12 depicts the real power
loss of 84-bus RDN before and after SNR-DG implementa-
tion using CSGA. The voltage profiles of all load levels are

also portrayed in Fig. 13. It can be concluded that real power
loss and system voltage profile were improved after SNR-DG
using CSGA. Furthermore, convergence characteristics of

CSGA were also better than SGA in all load levels, as shown
in Fig. 14.

As can be seen in Table 6, the proposed CSGA was com-

pared with SGA, MS, MBO, ACO methods for this system.
From Table 6, CSGA yielded a better result (81.5048 kW) than
other techniques for the light load level. At normal load level,

CSGA found minimum power loss (342.2977 kW) when com-
Fig. 15 The IEEE
pared to SGA, MS, MBO, and ACO. At heavy load level,
CSGA found the best outcome with the lowest power loss
(937.4880 kW), in comparison to the rest of the techniques.

Therefore, the proposed CSGA proved its efficiencies in find-
ing exceptional solution quality for 84-bus RDN.

5.4. 118-bus RDN

The IEEE 118-bus RDN represents a large-scale network with
132 branches, 15 opened switches, and 117 closed switches [45].

At normal load level, the total load demand is 22.71 MW and
17.04 MVAr, and the nominal voltage of the system is 11 kV.
The initially opened switches were 118-119-120-121-122-123-1

24-125-126-127-128-129-130-131-132. Fig. 15 shows the dia-
gram of the 118-bus RDN.

The results found by CSGA and SGA for different load
levels are reported in Table 7. As for the base case, the real

power loss of the system at light, normal, and heavy load levels
were 297.15 kW, 1298.09 kW, and 3799.70 kW, respectively,
which reduced to 134.9253 kW (54.5933% PLR),

467.0906 kW (64.0171% PLR), and 1299.6690 kW
(65.7955% PLR), respectively, after CSGA implementation
for SNR-DG. Fig. 16 depicts the real power loss of the 118-
118-bus RDN.



Table 7 Optimal results of CSGA and SGA for 118-bus RDN at three load levels.

Methods Item Load level

Light (0.5) Normal (1) Heavy (1.6)

Base

case

Opened

switches

118-119-120-121-122-123-124-125-

126-127-128-129-130-131-132

118-119-120-121-122-123-124-125-

126-127-128-129-130-131-132

118-119-120-121-122-123-124-125-

126-127-128-129-130-131-132

PL (kW) 297.15 1298.09 3799.70

Vmin (p.u) 0.9385 0.8688 0.7673

SGA Opened

switches

15-23-34-39-40-52-59-71-86-89-104-

107-109-121-128

6-21-24-26-44-51-66-82-90-95-108-

121-123-128-130

11-22-34-39-51-54-72-81-118-122-

125-126-128-130-131

PDG

(MW)/

(Bus)

2.6756/ (4) 1.5431/ (4) 2.5410/ (9)

0.8973/ (8) 1.4231/ (25) 1.5572/ (25)

0.9418/ (27) 0.8279/ (34) 2.2676/ (43)

0.6813/ (70) 1.2396/ (42) 1.6052/ (58)

0.7954/ (74) 2.6673/ (58) 1.4562/ (88)

0.1135/ (92) 1.4166/ (64) 3.9502/ (96)

0.7080/ (96) 3.4797/ (73) 4.4897/ (110)

PL (kW) 178.2864 742.9589 1663.3932

PLR (%) 40.0009 42.7653 56.2231

Vmin (p.u) 0.9667 0.9121 0.9066

CSGA Opened

switches

15-22-34-39-42-45-48-58-70-82-86-95-

104-109-128

21-25-34-39-42-53-61-72-85-95-98-

107-109-123-127

22-26-33-39-45-53-61-72-81-87-109-

123-125-128-130

PDG

(MW)/

(Bus)

0.9027/ (31) 2.1969/ (50) 3.1402/ (42)

0.4957/ (42) 1.6267/ (70) 3.4853/ (50)

1.0649/ (51) 2.8873/ (81) 1.6731/ (71)

1.1621/(74) 1.4496/ (97) 0.9286/ (76)

1.3602/ (79) 1.0702/ (99) 2.3376/ (83)

0.5993/ (83) 1.8278/ (105) 4.1690/ (96)

0.8315/ (96) 1.4913/ (111) 4.2231/ (118)

PL (kW) 134.9253 467.0906 1299.6690

PLR (%) 54.5933 64.0171 65.7955

Vmin (p.u) 0.9678 0.9570 0.9503
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bus system before and after SNR-DG implementation using
CSGA. The voltage profile improvements of all load levels
are shown in Fig. 17. Accordingly, the minimum voltage mag-
nitude had enhanced from 0.9385p.u., 0.8688p.u., and 0.7673p.
Fig. 16 Real power loss of 118-bus RDN before and after SNR-

DG at three load levels.
u. (base case) to 0.9678p.u., 0.9570p.u., and 0.9503p.u. at light,
normal, and heavy load levels, respectively. This indicated that
the CSGA application for SNR-DG had successfully improved
the system performance in terms of reduced real power loss

and enhanced system voltage profile. As for the convergence
curves in Fig. 18, CSGA obtained better optimal solutions at
faster convergence than SGA at all load levels.

Table 8 presents the comparisons of CSGA and the other
methods for 118-bus RDN at three load levels. At light load
level, the real power loss recorded by CSGA was

134.9253 kW – the best yield among other methods. At normal
load level, the CSGA recorded lower power loss
(467.0906 kW) when compared with SGA (742.9589 kW),
MS (644.3031 kW), MBO (853.5588 kW), and ACO

(854.8006 kW). Moreover, the real power loss achieved by
CSGA was 1299.6690 kW – the lowest when compared to all
the other techniques.

CSGA shows high exploration and exploitation. The supe-
rior exploration of CSGA is due to the updating solutions
around a set of best solutions obtained so far (i.e., search

group members). CSGA can explore the search space more
extensively and find more promising regions. The high explo-
ration of CSGA also benefits from the mutation process,

which helps to drive the algorithm to discover newer regions
of the search domain and avoid the local optimum in each iter-
ation. Another advantage is the high exploitation of CSGA,
which is because of both perturbation coefficient in family



Fig. 17 Voltage profiles of 118-bus RDN at three load levels.
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generation and the new search group selection mechanism.
CSGA uses the perturbation coefficient (a) for a smooth tran-
sition from exploration to exploitation in the optimization pro-

cess. When the perturbation coefficient has a high value in the
first iterations, CSGA generates individuals spreading
throughout the design space. When the perturbation coeffi-

cient is adaptively reduced over iterations, individuals created
by CSGA tend to locate in their neighborhood. Furthermore,
new search group selection is done by two different mecha-
nisms in global and local phases for generating a good balance

between exploitation and exploration capabilities of CSGA.
Thanks to the integration of the CLS strategy, CSGA has
the advantage of improving the search performance and avoid-

ing being stuck in the local optimum. Accordingly, the



Fig. 18 Convergence characteristics of CSGA and SGA for 118-bus RDN at three load levels.

Table 8 Comparisons of CSGA and other methods for 118-bus RDN at three load levels.

Loading level Items Opened switches Sum PDG (MW) PL (kW) PLR (%)

Light loading level Base case 118-119-120-121-122-123-124-125-126-127-128-129-130-131-

132

- 297.15 -

CSGA 15-22-34-39-42-45-48-58-70-82-86-95-104-109-128 6.4163 134.9253 54.5933

SGA 15-23-34-39-40-52-59-71-86-89-104-107-109-121-128 6.8129 178.2864 40.0009

MS 5-21-25-44-58-66-75-80-86-108-121-122-124-125-130 6.1226 167.6298 33.8970

MBO 41-53-109-119-120-122-123-124-125-126-127-128-129-130-132 5.9555 207.3185 30.2307

ACO 7-15-60-72-97-116-118-120-121-123-125-127-129-130-132 2.7223 209.2329 29.5864

Normal loading level Base case 118-119-120-121-122-123-124-125-126-127-128-129-130-131-

132

– 1298.09 –

CSGA 21-25-34-39-42-53-61-72-85-95-98-107-109-123-127 12.5497 467.0906 64.0171

SGA 6-21-24-26-44-51-66-82-90-95-108-121-123-128-130 12.5973 742.9589 42.7653

MS 8-24-26-60-66-74-82-95-109-119-120-121-122-127-130 13.4289 644.3031 50.3654

MBO 42-53-119-120-122-123-124-125-126-127-128-129-130-131-132 11.9001 853.5588 34.2451

ACO 15-21-39-42-53-59-88-97-122-126-127-129-130-131-132 12.5862 854.8006 34.1494

Heavy loading level Base case 118-119-120-121-122-123-124-125-126-127-128-129-130-131-

132

– 3799.70 –

CSGA 22-26-33-39-45-53-61-72-81-87-109-123-125-128-130 19.9569 1299.6690 65.7955

SGA 11-22-34-39-51-54-72-81-118-122-125-126-128-130-131 17.8671 1663.3932 56.2231

MS 11-20-33-41-53-58-72-81-98-108-118-124-125-127-130 20.2432 1560.7025 58.9257

MBO 45-107-119-120-121-122-123-124-125-126-127-128-129-130-132 21.0000 1827.8675 51.8945

ACO 17-33-39-42-52-59-72-89-98-109-119-122-126-129-130 15.0215 1918.2644 49.5154
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exploitation ability of CSGA is significantly improved. Hence,

CSGA obtained very competitive results and tended to outper-
form other compared methods for the SNR-DG problem.

6. Conclusion

The proposed CSGA approach had been successfully deployed
in this study to address the SNR-DG problem in RDNs. The
CSGA incorporated a chaotic local search into the original

SGA to enhance its search performance. The CSGA is, indeed,
a powerful search metaheuristic approach that deals with opti-
mization problems with exceptional solution quality and high

convergence speed. In this study, the CSGA was applied to
33-, 69-, 84-, and 118-bus RDNs to attain PLR maximization
for three load levels (light load: 0.5, normal load: 1.0, and

heavy load: 1.6) for the SNR-DG problem. The outcomes
revealed the capability exerted by CSGA in handling complex
and large-scale RDNs. For all load levels, CSGA recorded the
best solution quality when compared to other existing
approaches for PLR. Therefore, the CSGA proposed in this

study stands as an effective technique to address the SNR-
DG problem. For future works, the SNR-DG problem may
be formulated as a multi-objective problem considering techni-
cal and economic aspects. Moreover, it is encouraging to

develop a multi-objective version of CSGA to solve the
multi-objective problems in power systems.
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