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solutions via mutation, offspring generation, and selection. The Pareto archive with a selection
mechanism is used to preserve and enhance the convergence and diversity of solutions. The MOSGA
is validated on twenty-five prominent case studies, including nineteen unconstrained multi-objective
benchmark problems, six constrained multi-objective benchmark problems, and five multi-objective
engineering design problems to validate its capability and effectiveness. The statistical results are
compared to the outcomes of other well-regarded algorithms using the same performance metrics.
The comparative results show that MOGSA is robust and superior in handling a wide variety of
multi-objective problems.

© 2022 Published by Elsevier B.V.
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1. Introduction

Multi-objective optimization (MOO) is a multi-criteria
ecision-making tool, which considers the simultaneous opti-
ization of problems that have multiple objective functions [1].
he MOO is utilized in most disciplines such as economics, sci-
nce, and engineering to make optimal decisions based on the
rade-off for different objectives. The presence of MOO is of
reat importance in real-world problems [2]. In principle, the
esolution of multi-objective problems (MOPs) leads to a set of
rade-off solutions called the Pareto optimal set [3,4].

A priori and a posteriori, and interactive are three main classes
hat use the stochastic optimization algorithm to handle MOPs.
n a priori class, multiple objectives are aggregated into a single
bjective [5,6]. This phase highlights the importance of each
bjective from the perspective of decision-makers. After the ag-
regation process, single-objective algorithms can be used to
ind the optimal solution without algorithm modifications. This
pproach is relatively simple, with a low computational cost.
onetheless, a priori methods can lead to certain drawbacks.
t requires algorithms to run many times to attain the Pareto
ptimal set. Moreover, these methods face difficulty in an evenly
istributed set of solutions. Another disadvantage is that such
ethods are very sensitive to non-convex Pareto optimal fronts.

n a posteriori class, the formulations of MOPs are retained and
ptimized simultaneously [7]. Hence, the algorithms need to be
odified to solve multiple objectives. Such methods can obtain
set of Pareto optimal solutions in one simulation run. After

he optimization, decision-making can be made. This underscores
he essentiality of the diversity of solutions across all objectives
o offer decision-maker with a broad range of options. These
ethods can deal with any kind of Pareto optimal front effi-
iently. The algorithms based on a posteriori method are highly
revalent in the literature. In interactive class, preferences of
ecision-makers are examined and integrated during the process
f MOO [8]. Such methods keep the multi-objective formula-
ion but periodically pause the optimization process and fetch
he decision-making preferences. This supports algorithms not
earching non-promising areas of the search domain. Neverthe-
ess, the interactive method needs human involvement, making it
ore complicated and slower than a priori and a posteriori classes.
In 1984, the first concept of MOO using evolutionary algo-

ithms (EAs) was proposed by David Schaffer [9]. EAs are stochas-
ic search and optimization techniques that simulate the process
f natural evolution. EAs have been recognized as being well
uited to MOPs due to their features. Some of their advantages
re: firstly, their population-based nature allows obtaining non-
ominated set in a single run; secondly, EAs are capable of solving
arge and very complex search spaces, and they have low require-
ents for problem characteristics. The handling MOPs via EAs

s called the multi-objective evolutionary algorithms (MOEAs).
ver the past two decades, there was extraordinary growth in
he research and application of MOEAs to solve MOPs in diverse

ields such as economics, science, and engineering. According to M

2

heir mechanisms, MOEAs can be divided into three main groups:
areto-dominance-based, Decomposition-based, and Indicator-
ased. Pareto-based MOEAs are characterized by straightforward
echanisms, which became one of the most used strategies for
chieving a relatively good approximation of the true Pareto front.
Vector Evaluated Genetic Algorithms (VEGA) is commonly

nown as the first Pareto-based MOEA [10]. Based on the original
enetic Algorithm (GA), VEGA was proposed to make it capable
f solving MOPs. This algorithm divided the population into
everal subpopulations, and the number of subpopulations was
qual to the number of objective functions. Each subpopulation
as responsible for finding one objective. Although its concept
as straightforward, non-dominated solutions obtained by VEGA
ere usually not distributed homogeneously along the Pareto

ront, especially in the trade-off regions. The literature showed
hat the Non-Dominated Sorting Genetic Algorithm II (NSGA-
I) [11] is the most popular MOEA. Based on the well-regarded
A algorithm, NSGA-II was developed to overcome difficulties
n the first version (NSGA). These difficulties are the lack of a
haring parameter, lack of considering elitism, and high com-
utational cost of non-dominated sorting. This method used a
ast non-dominated sorting approach, a diversity preservation
ethod, and a crowded-comparison operator to alleviate the
forementioned issues. Multi-objective Particle Swarm Optimiza-
ion (MOPSO) is the second most popular MOEA suggested by
oello Coello & Lechuga [12]. The Pareto dominance concept was
tilized to define the flight direction of a particle. It used a muta-
ion operator to increase randomness and improve the diversity
f trial solutions. MOPSO had a high convergence rate that can be
ore likely to be terminated early with the incorrect Pareto front.
ulti-Objective Differential Evolution (MODE) [13] was devel-
ped based on the basic DE algorithm. Generally, MODE adopted
he non-dominated sorting and ranking selection methods. The
on-dominated sorting was done on the combined population
f parents and newly generated offspring. The aforementioned
lgorithms employed the concept of Pareto dominance in their
echanism. This concept provides such algorithms with practical
eans to handle MOPs. Since there were multiple optimum
olutions in the context of MOO, most algorithms utilized an
rchive (or repository) to save the best solutions obtained and
mprove this archive during the optimization process.

In recent years, many new and effective Pareto-based
OEAs integrated with appropriate mechanisms have been end-

essly proposed, namely Multi-Objective Grey Wolf Optimizer
MOGWO) [14], Multi-Objective Water Cycle Algorithm (MOWCA)
15,16], Multi-Objective Dragonfly Algorithm (MODA) [17], Multi-
bjective Ant Lion Optimizer (MOALO) [18], Multi-objective
rasshopper Optimization Algorithm (MOGOA) [19], Multi-
bjective Multi-Verse Optimizer (MOMVO) [20], Multiple Ob-
ective Symbiotic Organisms Search (MOSOS) [21], to name just
few. Despite the achievements in offering good solutions of

hese algorithms for complex MOPs, the No-Free-Lunch (NFL) [22]
videnced that no optimization method is able to deal with all

OPs effectively. Hence, there is certainly a need to improve the
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xisting algorithms or suggest new algorithms to address a wide
ange of MOPs more effectively.

Recently, a new metaheuristic method, namely the Search
roup Algorithm (SGA), was developed by Gonçalves et al. [23].
he mechanism of SGA is to create and develop a search group
ased on the potential solutions found. Its key advantage is bal-
ncing between exploration and exploitation phases to obtain
easible solutions within a search space. SGA yielded remarkable
utcomes when dealing with different engineering problems, in-
luding truss structure optimization [24], automatic generation
ontrol [25], networked control systems [26], optimization of
lanar steel frames [27], optimal power system voltage regula-
ion [28], and thermo-economic optimization of solar thermal
ystems [29,30]. There is a lot of potential for further research and
xploitation of SGA as it is a fairly new and promising method.
With motivations from the above discussions, this paper pro-

oses a new Multi-Objective Search Group Algorithm (MOSGA)
or solving MOPs. The MOSGA is the modified approach to convert
he SGA into an effective MOO algorithm. The main contributions
f this paper may be given as follows:

• A new multi-objective method based on SGA with meme-
plex structure of NSGA-II is developed to solve the MOPs.
SGA has the ability of high exploration and exploitation.
SGA provide an exceptional balance between exploitation
and exploration of the design domain. Two strategies of
NSGA-II, namely the elitist non-dominated sorting approach
and Pareto archive, are very effective and prominent to
define and storing non-dominated solutions. The SGA search
mechanism is integrated with the elitist non-dominated
sorting approach and Pareto archive of NSGA-II to develop
MOSGA. The aim of this incorporation strategy is to develop
a robust method for finding solutions more efficiently in a
multi-objective space.

• The performance of MOSGA is validated on a set of case
studies with diverse features, including unconstrained and
constrained multi-objective benchmark problems, and
multi-objective engineering design problems. The optimal
results of MOSGA are compared with those of various well-
regarded MOO techniques based on different statistical anal-
yses of five performance metrics, Wilcoxon rank-sum test,
Friedman test, robustness analysis, and graphical represen-
tations of Pareto optimal fronts.

• Analysis results indicate that the MOSGA is generally
successful to deal with the MOPs and obtains Pareto
optimal fronts with high convergence and diversity for dif-
ferent benchmark test problems and multi-objective engi-
neering problems. Comparative results highlight that MOSGA
yielded very competitive results and tended to outperform
other compared methods for most case studies.

Section 2 defines definitions related to this research. Section 3
resents detailed descriptions of both the SGA and the proposed
OSGA. Section 4 depicts the statistical analysis of MOSGA re-
ults in benchmark test problems. Subsequently, this section also
epresents the optimization results for multi-objective engineer-
ng design using the MOSGA and their statistical comparison and
nalysis. Lastly, Section 5 makes a conclusion for this paper.

. Background

.1. Multi-objective optimization

Multi-objective optimization problems (MOPs) have at least
wo conflicting objective functions that are minimized or max-
mized simultaneously. Hence, a MOP is generally stated as fol-
ows [5]:

ind : x = [x , x , . . . , x ]
T (1)
1 2 n

3

Minimize/ Maximize : F (x) = [f1(x), f2(x), . . . , fm(x)] (2)

Subject to : gj(x) ≤ 0, j = 1, 2, . . . , J (3)

hk(x) = 0, k = 1, 2, . . . , K (4)

x(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n (5)

where x is a solution vector of n design variables, F (x) is the
objective vector of m objective functions, the terms gj(x) de-
notes the jth inequality constraint, hk(x) denotes the kth equality
constraints, J and K are the number of inequality and equality
constraints, respectively, x(L)

i and x(U)

i are boundaries of the ith
decision variable.

The single-objective optimization task achieves a single op-
timal solution that has the best objective function value. Mean-
while, multiple optimal solutions called Pareto optimal
solutions exist in MOO. Most MOO algorithms employed the
concept of domination in their search mechanism to handle
multiple objectives and find Pareto optimal solutions. The concept
of domination and related terms are described in the following
definitions:

(a) Pareto dominance.
A solution vector x = [x1, x2,. . . , xm]T dominates y = [y1,

y2,. . . , ym]T if the following condition is satisfied:

• ∀i ∈ {1, 2, . . . ,m} : fi(x) ≤ fi(y). Solution x is no worse than
y in all objectives.

• ∃i ∈ {1, 2, . . . ,m} : fi(x) < fi(y). Solution x is strictly better
than y in at least one objective.

(b) Pareto optimality.
A solution is defined as a Pareto optimal solution or non-

dominated solution if no solution exists for the entire feasible
search space found to dominate it, as follows:

∄y ∈ Ω|y ≺ x (6)

(c) Pareto optimal set.
Pareto optimal set (PS) is a set that comprises Pareto optimal

solutions as follows:

PS = {x, y ∈ Ω|∄y ≺ x} (7)

(d) Pareto optimal front.
Pareto optimal front (PF ) is a set that comprises corresponding

objective values of Pareto optimal set, as follows:

PF = {F (x)|x ∈ PS} (8)

2.2. Elitist non-dominated sorting technique

To sort a population into different non-dominated fronts with
computed crowding distance, MOSGA applies the elitist non-
dominated sorting approach [11] which includes two methods:
fast non-dominated sorting and crowding distance computation.

In the fast non-dominated sorting technique, two criteria are
determined for each solution of the population, where domina-
tion count ni represents the number of solutions that dominate
the solution i, and Si, which is a set of solutions that is dominated
by solution i. All solutions with a domination count ni of zero are
put in the first non-dominated front. Second, for every solution
i with ni = 0, it visits each solution j in the set Sj and reduces
its domination count nj by one. If any solution j has a domination
count nj of zero, then it is put in the second front (a separate list
J). Afterwards, the above procedure is repeated for each solution
of the second front to determine the third front. This process is
implemented until all fronts are achieved. Fig. 1 provides the fast
non-dominated sorting method as Algorithm 1.

Crowding distance computation is then applied to preserve the
diversity of solutions in a particular front. The crowding distance
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Fig. 1. Pseudocode of the fast non-dominated sorting method [11].
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s
a

evaluates the density of solutions surrounding a particular so-
lution in the population. Fig. 2 presents the schematic view of
crowding distance computation. Firstly, the population is sorted
in ascending order of the magnitude of each objective value. The
boundary solutions for each objective are assigned an infinite
distance value. All other intermediate solutions are assigned a
crowding distance value as follows:

dij =

m∑
j=1

f i+1
j − f i−1

j

f max
j − f min

j
(9)

where m is the number of objectives, f min
j and f max

j denote the
inimum and maximum values of the jth objective, respectively,

i+1
j and f i−1

j represent the jth objective values for two adjacent
solutions (i + 1 and i – 1) of solution i, respectively. A solution
ocated in a lesser crowded region has a higher crowding distance
han others.

The crowded-comparison operator (≺n) is applied to com-
pare two solutions in multi-objective space using two criteria:
non-dominated rank (r) and crowding distance (d) as follows:

≺n j if(ri < rj) or ((ri = rj) and (di > dj)) (10)

Therefore, if two solutions belong to different non-dominated
ranks, the solution of the better non-dominated rank is preferred.
Otherwise, if both solutions have the same non-dominated rank,
the solution with the higher crowding distance value is preferred.
 t

4

Fig. 2. Schematic view of crowding-distance computation [30].

.3. Pareto archive selection

In MOO, an important task is to save obtained non-dominated
olutions in an archive to maintain a non-dominated set. The
rchive is updated over the course of iterations based on a selec-
ion mechanism suggested by Deb et al. [11]. All newly generated
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ndividuals are stored in an advanced Pareto archive. Two current
nd advanced archives are then combined, after which the com-
ined archive size is bigger than the limit size (npop). To maintain
he limited size of the archive, a selection mechanism is used
o remove undesirable solutions and avoid the loss of potential
andidate solutions. Fig. 3 presents the Pareto archive selection.
Firstly, the combined archive is ranked using fast non-

ominated sorting into different non-domination fronts (P1, P2,
. . , Pn). The first entry, which is selected for the new Pareto
rchive comprised of the solutions belonging to the best non-
ominated front (P1). If the P1 size is smaller than the limit size
f the archive, all P1 members will enter the new Pareto archive.
herefore, the remaining solutions for the new Pareto archive are
elected from the subsequent non-dominated fronts in ranking
rder (P2, P3, . . . ). This process continues until the new archive has

a sufficient number of fronts for npop members—assuming that the
front Pk is the last non-dominated front, beyond which no other
front can be accommodated. To choose precise solutions for the
new archive, solutions from the last front (Pk) are chosen based
on crowding distance value in descending order. The new Pareto
archive of size npop is used to generate a new search group in the
local phase.

3. Multi objective search group algorithm

3.1. SGA

The main aim of SGA is to create a suitable balance between
exploitation and exploration of the optimization process [27].
Both capabilities are important to obtain an optimum solution.
The SGA optimization procedure has two phases: global and local,
both phases comprising mutation, generation, and selection pro-
cedures [24]. In the global phase, the SGA forms a search group
to explore potential areas, and then exploits the best individuals
from these potential areas in the local phase. The SGA process is
presented in the next subsections.

3.1.1. Population initialization
The optimization process of the proposed SGA starts with the

creation of an initial population P in the search space as the
following equation:

Pij = xmin
j + (xmax

j − xmin
j )U[0, 1], for i = 1, . . . , npop,

j = 1, . . . , n,
(11)

n which Pij indicates the jth design variable of the ith individual
f P, xmin

j and xmax
j are limitation of the jth design variable, U[0,1]

s a stochastic variable between a range [0,1], npop represents the
opulation size, and n denotes the number of design variables.
 c

5

.1.2. Selection of initial search group
After the population is initialized, the objective function value

s estimated for individuals of P. Then, best ng individuals are
elected from P to generate a search group R using a standard
ournament selection. In this study, the tournament size is set to
for all experiments. Further details of the tournament selection
an be found in the literature [31]. Search group members are
anked based on the comparison of their objective function value
t every iteration.

.1.3. Mutation of search group
For enhancing the global searchability of the SGA, an inverse

ournament selection is applied to select nmut members from R
or mutation. Depending on the rank in the current search group,
he designs having the worst objective value are more likely to be
utated. The strategy here is to create new designs away from
urrent members’ locations to explore newer areas of the design
pace. Mutation of each new individual is performed as follows:
mut
j = E[R : ,j] + tεσ [R : ,j], for j = 1, . . . , n, (12)

here xmut
j denotes the jth design variable of a mutated individ-

al, R : ,j signifies the jth column search group matrix, E and σ
enote the mean value and standard deviation operators, respec-
ively, ε is the convenient stochastic variable, and t represents
he mutation operator to control the distance for a newly created
ndividual.

.1.4. Creation of families
Each search group member is defined as a family leader.
family is a set of family leader and individuals created by

his family leader. Each family leader generates a family via
erturbation by Eq. (13):
new
j = Rij + αε, for j = 1, . . . , n, (13)

here α is the perturbation constant which decreases at each
teration k as follows:
k+1

= bαk (14)

here b is a parameter that is determined by a combination of
he linear function.

Of note is that the perturbation constant α controls the SGA
echanism to explore and exploit the design domain. In first

terations, α is set to a value high enough to allow family leaders
o create individuals in any region of the domain (exploration).
GA can explore new regions to find a global solution in a search
omain. When αk is gradually reduced over iterations, individuals
ormed by family leaders tend to stay in their neighborhood
exploitation). A second aspect worth mentioning is that better
ndividuals create bigger families, which means that the size of
ach family is based on the ranking of its family leader in the
urrent search group.
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Fig. 4. SGA’s pseudocode.
.1.5. Selection of a new search group
The SGA optimization procedure includes two phases: global

nd local. The global stage selects the best member of each family
o create a new search group. Hence, the SGA explores most of the
esign domain to find promising regions. The local stage selects
est ng individuals from all the families to create a new search
roup. Thus, the algorithm exploits promising regions to refine
he current best solutions found. Algorithm 2 in Fig. 4 describes
he SGA’s pseudocode.

.2. MOSGA

This study proposes a modified approach to convert the SGA
nto an effective MOO algorithm. The proposed search mechanism
s based on the SGA where non-dominated solutions are defined
hrough mutation, offspring generation, and selection processes.
he present study integrates two new modules to develop this
rotocol, which is similarly used to develop NSGA-II. The first
odule is the elitist non-dominated sorting method, which is em-
loyed to determine the non-dominated ranks of solutions. The
econd module is a Pareto archive with a selection mechanism
o store and maintain the diversity of non-dominated solutions
btained. This Pareto archive is also retrieved to create new
earch groups in the local phase of the MOSGA. These modules
nd the MOSGA process are presented in the next subsections.
To start the process of MOSGA, an initial population P is

andomly created in a similar manner as that of SGA, according to
q. (11). In initial population P, multiple objective functions for
ach individual are estimated after the initialization process. In
erms of SOO, individuals of P are ranked based on a comparison
f their objective function values. Nevertheless, in MOO, individ-
als of P are ranked into different non-dominated ranks with
ifferent crowded distance values via the elitist non-dominated
orting technique. A tournament selection is later used to select
g best individuals from P to generate search group R based on
heir rankings in the non-dominated ranks.

From the search group R, low-ranking members in non-
ominated ranks are selected to be mutated. The mutation then
roceeds according to Eq. (12). This step allows MOSGA to en-
ance the algorithm’s global searchability and avoid being stuck
n the local front. Unlike perturbation constant (αk), distance
djustment parameter (t) and convenient stochastic variable (ε)

for the mutation process are not linearly reduced over the course
of iterations. Parameter ε provides random value in each iteration
to enhance exploration not only in the first iterations but also in
the last iterations. This approach is essential to avoid local front
6

stagnation, especially in the last iterations. After the mutation
process, search group members are determined as family leaders
that create families via the perturbation constant. This param-
eter changes adaptively to turn the optimization process from
exploration to exploitation. High value for αk promotes extra
searches across the design space (exploration), and low value
encourages the search intensity in the vicinity (exploitation). This
allows MOSGA to progress the convergence of solutions through
iterations. The difference in feature from the one of the original
SGA is that all newly generated individuals are saved in the
advanced archive to be sorted later.

Finally, it is an essential stage of the MOSGA to select a
new search group. It influences both convergence and diversity
properties of solutions found. This process of both stages is done
by using a tournament selection. To determine the best family
member in the global phase, all members of each family are
ranked based on the elitist non-dominated sorting technique. The
best member of each family is selected to generate a new search
group. The primary purpose of the global stage is to explore the
entire search space. In the local phase, the best ng individuals
from the Pareto archive are selected to create a new search group.
This stage tends to exploit and refine the domain of the current
best non-dominated solutions. In both global and local phases,
selecting better individuals for a new search group enables the
improvement of the convergence of solutions (the first goal of
MOO). Using tournament selection, individuals from less crowded
areas have a high probability of being selected to create a new
search group. This helps improve the distribution and spread of
less distributed regions in multi-objective search space. Hence,
the diversity of MOSGA solutions (the second goal of MOO) is
guaranteed.

Fig. 5 describes MOSGA’s pseudocode as Algorithm 3. Its key
advantages to deal with MOPs can be outlined as below:

• The elitist non-dominated sorting provides an appropriate
approach to rank a population into non-dominated ranks
with calculated crowded distance. Thereby, MOSGA is able
to efficiently execute the next steps of its process (muta-
tion, generation, and selection) based on ranking on non-
dominated fronts.

• The mutation phase is implemented to endlessly explore
new areas of the search domain. This enhances exploration
capability and local minima avoidance of MOSGA.

• The adaptive conversion between exploration phase and
exploitation phase is governed by the perturbation con-
stant αk. Therefore, the convergence of obtained solutions
is guaranteed.
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Fig. 5. MOSGA’s pseudocode.
• Better families are generated by better individuals to acquire
a better convergence for the optimization procedure.

• The selection of the next search group is performed based
on two phases (global and local phases) to generate a satis-
factory balance between exploitation and exploration capa-
bilities.

• Individuals from less crowded regions have a higher proba-
bility of selection to form a new search group using tour-
nament selection. MOSGA obtains a diversity of solutions
based on this pattern.

• The Pareto archive efficiently saves the best non-dominated
solutions found. After each iteration, the archive is updated
using a selection mechanism to preserve the diversity of
solutions.

4. Numerical examples and results

4.1. Experimental setup

In this subsection, twenty-five well-known multi-objective
benchmark problems extracted from credible research studies are
employed to validate the performance and capability of MOSGA.
These problems contain objective functions with distinct fea-
tures having distinctive dimensions of design variables, which are
classified into two main categories:

• Unconstrained multi-objective problems: ZDT1, ZDT2, ZDT3,
ZDT6, BINH1, DEB1, DEB2, DEB3, FON1, FON2, KUR, LAU,
MUR, POL, SCH1, SCH2, VN1, VN2, and VN3 [2,32–41].

• Constrained multi-objective problems: BEL, BINH2, CONSTR,
KITA, SRN, and TNK [5,42–46].

• Multi-objective engineering design problems: four-bar truss
design problem, speed reducer design problem, disk brake
design problem, welded beam design problem, and spring
design problem.

Appendix A contains all mathematical formulations that are
used to define multi-objective benchmark test problems. The
MOSGA is developed in MATLAB programming software. The ini-
tial parameters of MOSGA, including population size (npop), num-
ber of search group members (n ), number of mutations (n ),
pop mut

7

perturbation constant (αk), and global iteration ratio (GIR), are
selected as 100, 20, 5, 3, and 0.3, respectively, for all benchmark
problems. MOSGA is compared to NSGA-II and MOPSO as two of
the most prominent MOO algorithms, whereas MOMVO, MODA,
and MOGOA symbolize the most recent MOO algorithms to ver-
ify the results. The MATLAB source codes of NSGA-II, MOPSO,
MOMVO, MODA, and MOGOA are publicly available at Math-
Works [47–51].

The population size for all MOO algorithms is set to 100.
NSGA-II uses a crossover probability of 0.9, a mutation rate of 1/u
(where u = is the number of design variables), and distribution
indexes for crossover and mutation operators as ηc = 20 and
ηm = 20, respectively. The simulated binary crossover operator
and polynomial mutation are used to generate the offspring for
NSGA-II. MOPSO is run using a mutation rate of 0.5 and 30
divisions for the adaptive grid. For MOMVO, worm hole existence
probability is increased linearly from 0.2 to 1. MODA is executed
with Levy exponent of 1.5. For MOGOA, maximum and mini-
mum values of decreasing coefficient are set to 1 and 0.00004,
respectively.

There are clearly two goals in MOO: (1) find solutions that
converge to the Pareto optimal front, and (2) maintain a diver-
sity of solutions in the Pareto optimal set. Therefore, a set of
performance metrics are needed to adequately benchmark the
performance of MOO algorithms. In this paper, the term PF true is
the true Pareto optimal front defined by functions that composed
a MOP. Note that PF true is fixed and constant. Meanwhile, PF g
signifies the term Pareto optimal front generated by a MOO
algorithm. The following subsections describe the metrics used
in the study.

4.1.1. Generational distance
The Generational Distance (GD) indicator was proposed by Van

Veldhuizen et al. [52] to assess ability of an algorithm to generate
PF g that converges to the PF true. The mathematical definition of
GD indicator can be given as follows:

GD =

√∑npf
i=1 di

2

(15)

npf
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Fig. 6. Schematic view of the GD and IGD metrics.

where di is the Euclidean distance between each solution in PF g
nd the nearest solution in PF true in the objective space, and
pf denotes the number of solutions in PF g . A smaller GD value
ndicates a better convergence to PF true.

.1.2. Inverted generational distance
An inverse variation of the GD metric, the Inverted Genera-

ional Distance (IGD) metric, is given as follows [53]:

GD =

√∑nt
i=1(d

′

i)2

nt
(16)

here di′ is the Euclidean distance between each solution in PF true
nd the nearest solution in PF g in the objective space, and nt
enotes the number of solutions in PF true. A smaller IGD value
ndicates a better convergence to PF true. Fig. 6 depicts a schematic
iew of the GD and IGD metric.

.1.3. Spacing
The Spacing (SP) indicator was suggested by Scott [54] to

ssess the distribution of solutions in PF g . The mathematical
quation of SP metric is:

P =

√ 1
npf − 1

npf∑
i=1

(di − d)2 (17)

here di = minj(|f i1(x)− f j1(x)|− |f i2(x)− f j2(x)|), i, j = 1, 2, . . . , npf ,
nd d is the mean value of all di. A smaller SP value shows a
etter distribution of solutions in PF g . A schematic view of the
P indicator is depicted in Fig. 7.

.1.4. Spread
The Spread (∆) indicator was suggested by Deb [5] to assess

he diversity of solutions in PF g . The mathematical equation of ∆

etric is defined as follows:

=
df + dl +

∑npf
i=1

⏐⏐di − d
⏐⏐

df + dl + (npf − 1)d
(18)

where di represents the Euclidean distance between neighboring
solutions in PF g , and d represents the mean value of all di, and
f and dl denote the Euclidean distances between the extreme
olutions in PF true and PF g . A schematic view of the ∆ metric is
ortrayed in Fig. 8. A smaller ∆ value indicates a better diversity
better extent of spread and distribution) of solutions in PF .
g

8

Fig. 7. Schematic view of the SP metric.

Fig. 8. Schematic view of the ∆ metric.

The following is a calculation for the ∆ metric for problems
that have more than two objective functions [55]:

∆ =

∑m
i=1 d(Ei, Ω) +

∑
X∈Ω |d(X, Ω) − d|∑m

i=1 d(Ei, Ω) + (|Ω| − m)d
(19)

here Ω is a set of solutions, Ei is ith extreme solutions in PF true,
is the number of objective functions and:

(X, Ω) = min
Y∈Ω,Y ̸=X

∥F (X) − F (Y )∥ (20)

d =
1

|Ω|

∑
X∈Ω

d(X, Ω) (21)

4.1.5. Hypervolume
The Hypervolume indicator (HV) computes the volume cov-

ered by solutions in PF g in the objective space for a MOP where
all objectives are minimized. A reference point W is used to
reate a hypercube vi for each solution i ∈ Ω , where solution i
s the diagonal corners of the hypercube vi. A vector of the worst
bjective function values is generated to obtain the reference
oint. Subsequently, a union of all hypercubes is obtained, and
ts hypervolume can be computed by Eq. (22) [5]:

V =
|Ω|

∪ vi (22)

i=1
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Fig. 9. Schematic view of the HV metric.

s shown in Fig. 9, the HV is depicted as a hatched area. Generally,
MOO algorithm with a high HV value is desirable.
In the context of benchmark function optimization, the op-

imization process of each method is independently run thirty
imes for each case study to analyze their statistical results.
oreover, the number of function evaluations (NFEs) that are
onsidered as the stop criteria are set to 10,000 for reliable com-
arisons. To ensure fair and reliable comparisons, the maximum
ize of the Pareto archive is kept at 100 for all trials. For a compar-
tive study, the statistical results for all considered methods are
ompared using four performance metrics (IGD, SP, ∆, and HV). In
his study, it is worth pointing out that all performance metrics
re calculated in normalized objective space. Smaller values for
GD, SP, ∆ and a higher value for HV show the better quality of
the Pareto optimal front.

4.2. Multi-objective benchmark problems

4.2.1. Unconstrained multi-objective problems
Table 1 gives the final statistical results for IGD, SP, ∆, and HV

etrics obtained by MOSGA, NSGA-II, MOPSO, MOMVO, MODA,
nd MOGOA, along with the required computational time for ZDT
est suites. Table 1 indicates that MOSGA shows significant supe-
iority over the NSGA-II, MOPSO, MOMVO, MODA, and MOGOA
n terms of average and standard deviation values for the IGD
etric. On the contrary, other algorithms all fail to obtain a near-
ptimal Pareto front with 10,000 NFEs because they are stuck
n the local Pareto optimum. This is claimed by their large IGD
alues in Table 1. Besides, MOSGA not only obtains the best
esults for the IGD indicator but also ranks first for SP and ∆ indi-
ators. With respect to the HV metric, MOSGA is superior to other
ptimizers. Therefore, MOSGA shows the highest convergence
nd coverage for ZDT test suites.
Fig. 10 illustrates the graphical representations of true Pareto

ronts and Pareto fronts obtained by MOSGA for ZDT test suites.
ll plots indicate that the Pareto optimal fronts yielded by MOSGA
re distributed homogeneously along true Pareto optimal fronts.
Table 2 shows the statistical results of IGD, SP, ∆, and HV

ndicators obtained by each algorithm for test functions BINH1,
EB1, DEB2, DEB3, FON1, and FON2. The statistical results for
he IGD metric show that MOSGA outperforms other techniques,
hich proves that the algorithm of the present study has a better
onvergence on all of these test functions. It should be mentioned
hat the superiority of MOSGA is significant for test functions
INH1, DEB2, and FON2, which is inferred from considerable dif-
erences between the average IGD values yielded by MOSGA and
9

those yielded by other optimizers. Moreover, NSGA-II acquires
the second-best results from the IGD metric and ranks second
after MOSGA for all these problems. On the contrary, MODA
and MOGOA produce the worst statistical outcomes for the IGD
metric.

According to Table 2, MOSGA achieves the best optimization
results of SP and ∆ metrics for most of these problems except
for test function FON1. For test function FON1, the MOSGA has
the second-best average SP values after the MOPSO; however, the
best result of the ∆ metric is obtained by MOSGA for this case.
Additionally, MOPSO also shows competitive results for SP values
compared to MOSGA for test functions BINH1 and DEB1; how-
ever, the ∆ values obtained by the MOSGA are much better than
those achieved by MOPSO. Hence, MOSGA offers Pareto optimal
solutions that spread better than other algorithms. Meanwhile,
MODA has the weakest performance of all in terms of SP and ∆

metrics, which indicates that this method is unable to provide a
well-distributed Pareto front. For the HV metric, MOSGA achieves
better performance than other methods for most test functions.

Fig. 11 depicts graphical representations of Pareto fronts ob-
tained by MOSGA for test functions BINH1, DEB1, DEB2, DEB3,
FON1, and FON2. Fig. 11 reveals that MOSGA magnificently con-
verges the true Pareto optimal fronts with appropriate distribu-
tion and spread for Pareto optimal solutions.

Table 3 illustrates the statistical optimization results of per-
formance metrics for test functions KUR, LAU, MUR, POL, SCH1,
and SCH2. Similar to Tables 1–2, the MOSGA in Table 3 attains the
best statistical results for the IGD metric. Hence, MOSGA is able to
offer superior convergence on these problems. Moreover, MOSGA,
NSGA-II, and MOPSO produce competitive results in terms of the
IGD metric for test functions MUR, POL, and SCH2. Meanwhile,
the MODA has the weakest performance for the IGD metric in
most cases. As per the outcomes of algorithms from Table 3,
the MOSGA has the advantage of finding the best SP and ∆

values for test functions KUR, LAU, MUR, POL, and SCH1, whereas
MOPSO indicates the lowest average ∆ value for test function
SCH2 and the proposed algorithm proves second-best for this
problem. Based on the SP and ∆ metrics, the MODA has the worst
statistical results, which shows that this algorithm faces difficulty
in producing solutions with appropriate distribution and spread.
Moreover, MOSGA outperforms other algorithms in terms of HV
metric for five out of six test functions.

These observations from Table 3 can be confirmed by the
graphical representations depicted in Fig. 12, from which Pareto
fronts yielded by MOSGA not only converge on the true Pareto
front quite well but also distribute properly. Moreover, Fig. 12
highlights that MOSGA successfully covers all parts of the true
Pareto fronts uniformly for problems related to disconnected
curves (i.e., test functions KUR, POL, and SCH2).

Table 4 illustrates the results of IGD, SP, ∆, and HV metrics
for test functions VN1, VN2, and VN3. Problems VN1, VN2, and
VN3 out of twenty-five problems are selected to benchmark the
performance of MOSGA to handle problems that have more than
two objective functions. These problems contain three objective
functions, which make them more challenging. Table 4 indicates
that MOSGA provides the best performance out of all statis-
tical metrics. This proves that MOSGA has better convergence
and distribution ability than other techniques for problems with
three objectives. Fig. 13 depicts the graphical representations of
Pareto optimal fronts of functions VN1, VN2, and VN3 obtained
by MOSGA to further confirm the above claim.

Based on the performance metrics from Tables 1–4, the
present study concluded that MOSGA is the best of the six consid-
ered algorithms for dealing with unconstrained multi-objective
test problems.
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Table 1
Statistical results of MOO algorithms in terms of IGD, SP, ∆, and HV metrics for ZDT test suites.
Algorithms IGD SP ∆ HV Times

Average SD Average SD Average SD Average SD

ZDT1
MOSGA 2.3968E−04 2.3485E−04 8.0527E−03 6.3937E−04 4.3094E−01 3.8630E−02 7.1804E−01 2.6305E−03 0.786
NSGA-II 3.8932E−02 3.1384E−03 3.9284E−02 1.7828E−02 7.4223E−01 3.9370E−02 0 0 3.452
MOPSO 2.3122E−02 4.9021E−03 3.2144E−02 2.6908E−02 8.5763E−01 4.3030E−02 7.0652E−02 6.9540E−02 1.285
MOMVO 7.3987E−03 2.7592E−03 1.3303E−02 4.1903E−03 9.1745E−01 5.7128E−02 4.7914E−01 4.4532E−02 0.679
MODA 4.9473E−02 6.4001E−03 3.8809E−02 1.9916E−02 1.1070E+00 7.6098E−02 2.0873E−04 1.1432E−03 25.356
MOGOA 3.1405E−02 7.0670E−03 1.3620E−02 5.1828E−03 1.1246E+00 5.2810E−02 1.9709E−02 3.3360E−02 89.371

ZDT2
MOSGA 2.3260E−04 1.8444E−04 7.8326E−03 5.9250E−04 4.1976E−01 4.8904E−02 4.4190E−01 4.0192E−03 0.642
NSGA-II 7.0689E−02 3.7034E−03 5.0368E−02 2.1022E−02 8.4477E−01 3.9106E−02 0 0 6.682
MOPSO 2.3209E−02 5.8724E−03 3.5188E−02 6.1684E−02 9.5023E−01 9.1913E−02 1.1290E−02 2.9392E−02 0.681
MOMVO 1.5513E−02 6.9315E−03 2.4349E−02 2.3565E−02 1.0307E+00 5.5423E−02 1.2130E−01 5.7377E−02 0.462
MODA 8.0432E−02 7.6898E−03 2.7383E−02 2.5191E−02 1.0245E+00 4.1787E−02 0 0 26.260
MOGOA 3.3044E−02 7.9090E−03 8.4144E−03 2.0277E−02 1.0340E+00 5.6817E−02 1.6051E−03 6.4195E−03 93.922

ZDT3
MOSGA 7.7038E−03 5.4142E−05 4.7996E−03 4.6090E−04 7.9463E−01 1.5661E−02 6.5709E−01 7.0740E−03 0.672
NSGA-II 1.6612E−02 1.0121E−03 3.0166E−02 1.2590E−02 8.0903E−01 1.6445E−02 4.7630E−02 1.7221E−02 3.531
MOPSO 1.2600E−02 1.8950E−03 2.5281E−02 1.1838E−02 9.0528E−01 3.8640E−02 1.2318E−01 4.7133E−02 1.280
MOMVO 8.6659E−03 1.5795E−03 7.0174E−03 1.9820E−03 9.8104E−01 4.2903E−02 4.0763E−01 5.3085E−02 0.695
MODA 2.1337E−02 2.7293E−03 3.1784E−02 1.7359E−02 1.1427E+00 8.1249E−02 7.3286E−03 1.3708E−02 25.417
MOGOA 1.8430E−02 4.9315E−03 9.2996E−03 3.9220E−03 1.1992E+00 6.8928E−02 5.6136E−02 6.2602E−02 90.627

ZDT6
MOSGA 1.4593E−04 2.2273E−05 6.7931E−03 5.1023E−04 3.3362E−01 2.5230E−02 5.0462E−01 1.2629E−04 0.568
NSGA-II 1.8183E−01 7.3316E−03 5.6741E−02 1.6519E−02 8.6553E−01 2.7958E−02 0 0 7.669
MOPSO 6.0957E−02 3.7833E−02 3.3084E−01 2.6390E−01 1.0042E+00 7.7956E−02 4.4245E−02 7.2084E−02 0.663
MOMVO 4.0381E−03 6.2540E−03 2.2603E−01 1.6018E−01 1.0839E+00 1.2665E−01 3.7262E−01 6.7402E−02 0.268
MODA 1.5852E−01 4.8790E−02 1.4361E−01 1.7607E−01 1.1042E+00 1.2825E−01 3.1645E−02 1.2044E−01 13.011
MOGOA 7.4359E−02 6.7353E−02 5.1544E−02 5.6740E−02 1.0844E+00 7.5557E−02 1.4237E−01 1.9546E−01 30.793
Fig. 10. Pareto optimal fronts generated by MOSGA for ZDT test suites.
10
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Table 2
Statistical results of MOO algorithms in terms of IGD, SP, ∆, and HV metrics for test functions BINH1, DEB1, DEB2, DEB3, FON1, and FON2.
Algorithms IGD SP ∆ HV Times

Average SD Average SD Average SD Average SD

BINH1
MOSGA 2.5152E−04 1.3499E−05 7.4010E−03 5.9414E−04 3.9194E−01 3.3539E−02 8.5862E−01 1.9522E−04 0.662
NSGA-II 2.8278E−04 2.1241E−05 9.1347E−03 8.0178E−04 4.9181E−01 4.1174E−02 8.5768E−01 2.4704E−04 2.240
MOPSO 3.2388E−04 6.1762E−05 7.6466E−03 1.7282E−03 4.3304E−01 4.9311E−02 8.5784E−01 5.9603E−04 4.226
MOMVO 8.9187E−04 1.7127E−04 1.7190E−02 3.4716E−03 1.1973E+00 6.1057E−02 8.4816E−01 2.8178E−03 1.376
MODA 1.4240E−03 2.9550E−04 1.8782E−02 4.6355E−03 1.5437E+00 1.7129E−01 8.4146E−01 4.1781E−03 5.835
MOGOA 1.1544E−03 1.9730E−04 1.5901E−02 4.2928E−03 1.5141E+00 3.4005E−02 8.4273E−01 3.3197E−03 6.746

DEB1
MOSGA 1.4338E−04 1.5187E−05 8.1025E−03 6.3383E−04 4.0837E−01 2.5713E−02 4.4407E−01 1.5029E−04 0.603
NSGA-II 1.4746E−04 7.2864E−06 8.5035E−03 7.9044E−04 4.4693E−01 2.5750E−02 4.4394E−01 2.0664E−04 1.730
MOPSO 1.8270E−04 6.1820E−05 8.2998E−03 5.4773E−03 4.2018E−01 5.7188E−02 4.4089E−01 1.5742E−03 4.604
MOMVO 6.9269E−04 1.6590E−04 1.5712E−02 4.1987E−03 1.3954E+00 6.8152E−02 4.2443E−01 5.0092E−03 1.977
MODA 7.1969E−04 3.1579E−04 2.9839E−02 1.6896E−02 1.4522E+00 1.7843E−01 4.2110E−01 8.9193E−03 8.885
MOGOA 8.0953E−04 2.1193E−04 1.1650E−02 7.0603E−03 1.5438E+00 1.4359E−01 4.1575E−01 7.8046E−03 9.867

DEB2
MOSGA 1.6890E−04 1.3785E−05 5.1828E−03 4.7572E−04 7.9376E−01 1.7862E−02 4.6542E−01 1.1679E−04 0.641
NSGA-II 1.9706E−04 2.4707E−05 9.8477E−03 1.8343E−02 8.7242E−01 1.2098E−01 4.6268E−01 2.4242E−03 2.436
MOPSO 1.4466E−03 5.3482E−04 3.5314E−02 1.6207E−02 1.1311E+00 7.4575E−02 4.4162E−01 1.1310E−02 1.379
MOMVO 6.6477E−04 1.7021E−04 2.6135E−02 5.1701E−02 1.2277E+00 6.9144E−02 4.5597E−01 3.6735E−03 1.074
MODA 7.0658E−04 2.1298E−04 4.4197E−02 6.7433E−02 1.3690E+00 7.1858E−02 4.5721E−01 3.9779E−03 9.210
MOGOA 3.2520E−03 3.3721E−03 1.0704E−02 8.0241E−03 1.3992E+00 1.5683E−01 4.2728E−01 3.6980E−02 8.083

DEB3
MOSGA 1.3857E−04 2.6072E−05 7.2566E−03 5.9399E−04 4.6303E−01 3.6419E−02 2.6221E−01 2.5913E−04 0.548
NSGA-II 1.5323E−04 2.5987E−05 1.0281E−02 1.3927E−03 5.3417E−01 3.9427E−02 2.6211E−01 6.9920E−05 1.752
MOPSO 2.3636E−04 5.9114E−05 1.1009E−02 7.0060E−03 5.5729E−01 5.7794E−02 2.6201E−01 4.5291E−04 4.484
MOMVO 2.2870E−04 3.8984E−05 1.2457E−02 1.5442E−03 8.5800E−01 4.8636E−02 2.5936E−01 1.5937E−03 1.853
MODA 5.1740E−04 1.7061E−04 2.9466E−02 2.7458E−02 1.4464E+00 1.7607E−01 2.4882E−01 7.5396E−03 8.905
MOGOA 4.1660E−04 1.6835E−04 2.0047E−02 1.6191E−02 1.2084E+00 9.0217E−02 2.5350E−01 4.4177E−03 8.190

FON1
MOSGA 3.1577E−04 2.0035E−05 6.9022E−03 6.1766E−04 3.9326E−01 2.8575E−02 2.2436E−01 1.5120E−04 0.645
NSGA-II 3.2792E−04 1.1396E−05 9.2744E−03 5.2335E−04 4.9458E−01 2.9845E−02 2.2322E−01 4.2397E−04 2.439
MOPSO 3.6524E−04 8.0952E−05 6.1671E−03 7.3897E−04 3.9686E−01 4.0563E−02 2.2334E−01 6.9387E−04 3.854
MOMVO 9.3366E−04 1.1693E−04 1.5689E−02 2.4918E−03 1.1246E+00 4.5227E−02 2.1808E−01 1.9490E−03 1.474
MODA 1.4624E−03 2.8309E−04 1.7153E−02 4.6914E−03 1.5020E+00 1.7215E−01 2.1280E−01 3.6453E−03 5.837
MOGOA 1.5761E−03 4.6353E−04 1.5433E−02 3.5249E−03 1.4809E+00 4.5348E−02 2.1159E−01 5.3303E−03 7.056

FON2
MOSGA 1.9602E−04 1.2604E−05 6.8773E−03 7.1328E−04 4.0187E−01 3.6833E−02 4.2961E−01 2.5024E−04 0.742
NSGA-II 3.4895E−04 8.6231E−05 8.2606E−03 7.7427E−04 4.7539E−01 3.7910E−02 4.2232E−01 2.0742E−03 3.876
MOPSO 4.0872E−04 1.2197E−04 7.4465E−03 1.5653E−03 4.3766E−01 4.8457E−02 4.2350E−01 2.3850E−03 4.017
MOMVO 5.1908E−04 8.1980E−05 1.4136E−02 2.2334E−03 1.0397E+00 4.7523E−02 4.2014E−01 1.6817E−03 1.056
MODA 9.4585E−04 1.3947E−04 1.5992E−02 3.5337E−03 1.5407E+00 6.1461E−02 4.0238E−01 4.2837E−03 5.824
MOGOA 8.2475E−03 2.2668E−03 1.0124E−02 2.8035E−03 1.2847E+00 3.7533E−02 2.1763E−01 2.7077E−02 13.318
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4.2.2. Constrained multi-objective problems
Table 5 shows statistical optimization results of IGD, SP, ∆,

nd HV metrics obtained by the MOSGA for test functions BEL,
INH2, CONSTR, KITA, SRN, and TNK. A death penalty function is
pplied as an approach for MOSGA to handle constraints. NSGA-
I, MOPSO, MOMVO, MODA, and MOGOA are also carried out on
he same test functions for comparison purposes. Based on Ta-
le 5, the MOSGA surpasses other reported algorithms to provide
uperior convergence on constrained multi-objective problems.
able 5 shows the superior results on average and the SD values
f the IGD metric highlighted in bold. Likewise, MOSGA yields
areto optimal solutions with the best distribution and spread.
ndeed, the proposed MOSGA outperforms other algorithms as
er the statistical results of SP and ∆ indicators in Table 5. For
he HV metric, the results obtained by MOSGA are also better
han those of other methods, which shows that MOSGA has better
onvergence capability and robustness than others. Of the five
tudied algorithms, NSGA-II produces the second-best results for
he IGD metric after MOSGA for most of the test functions (four
ut of six functions in Table 5). Nevertheless, solutions yielded
y this algorithm display poor distribution and spread. This is
nferred by its high values of SP and ∆ metrics. On the contrary,

ODA displays the worst convergence.

11
Fig. 14 illustrates graphical representations of Pareto fronts
btained by MOSGA on test functions BEL, BINH2, CONSTR, KITA,
RN, and TNK test functions. These figures show that some of the
est problems have special Pareto optimal fronts. In particular,
ONSTR is made up of a concave front connected to a linear front.
oreover, test function KITA has a continuous and concave front,
hereas the front function of TNK is a discontinuous wave-like
hape. Fig. 14 reveals that MOSGA is able to obtain solutions that
onverge fairly well on true Pareto fronts and spread the entire
areto optimal regions evenly.
From the assessment, it is apparent that the MOSGA advan-

ageously handles constraints and obtains Pareto optimal fronts
ith high convergence and distribution in different Pareto opti-
al regions.

.2.3. Statistical test
In this study, the Wilcoxon rank-sum test is used to validate

hether the results of MOSGA are pointedly superior to those of
ther methods or not. A p-value < 0.05 and signed with ‘‘+’’ show

a significant difference between two solution sets of the MOSGA
and other methods. The results of the Wilcoxon rank-sum test at
a significance level of 5% for all test problems for IGD, SP, ∆, and
HV metrics are presented in Table 6, 7, 8, and 9 , respectively.
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Fig. 11. Pareto optimal fronts generated by MOSGA for test functions BINH1, DEB1, DEB2, DEB3, FON1, and FON2.
Fig. 12. Pareto optimal fronts generated by MOSGA for test functions KUR, LAU, MUR, POL, SCH1, and SCH2.
Table 6 shows that results of the MOSGA are statistically
different from those of the NSGA-II, MOPSO, MOMVO, MODA,
and MOGOA for 22, 23, 24, 25, and 25 test problems, respec-
tively, for Wilcoxon rank-sum test in terms of IGD metric. Based
on the statistical test for SP indicator, MOSGA obtains statisti-
cally different results from NSGA-II, MOPSO, MOMVO, MODA,
and MOGOA for 20, 16, 23, 25, and 24, out of 25 test problems,
respectively, as shown in Table 7. Regarding statistical test for
∆ metric, MOSGA finds statistically different results from NSGA-
II, MOPSO, MOMVO, MODA, and MOGOA for 24, 19, 25, 25, and
25 test problems, respectively. Similarly, Table 9 gives Wilcoxon
12
rank-sum test for HV indicator, MOSGA is different from NSGA-
II, MOPSO, MOMVO, MODA, and MOGOA for 23, 23, 25, 25, and
25 test problems, respectively, out of 25 test problems. Hence,
MOSGA proves its pointedly superior performance in comparison
with other methods for most test problems.

Another statistical test, namely the Friedman rank test, is
conducted to further validate the comparative study of all six
MOO algorithms. Table 10 shows the results obtained by the
Friedman test based on IGD, SP, ∆, and HV metrics for all bench-
mark problems. The best rank (with the smallest rank value)
is shown in bold. As shown in Table 10, MOSGA has the best
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Table 3
Statistical results of MOO algorithms in terms of IGD, SP, ∆, and HV metrics for test functions KUR, LAU, MUR, POL, SCH1, and SCH2.
Algorithms IGD SP ∆ HV Times

Average SD Average SD Average SD Average SD

KUR
MOSGA 2.0447E−04 1.6988E−05 1.4701E−02 4.1759E−03 5.7899E−01 2.7119E−02 5.0106E−01 6.5985E−04 0.646
NSGA-II 2.9254E−04 5.9749E−05 1.5604E−02 4.7022E−03 7.3158E−01 6.1274E−02 4.9365E−01 3.5606E−03 3.806
MOPSO 8.4371E−04 4.5979E−04 2.0591E−02 1.3250E−02 7.7537E−01 1.0487E−01 4.7577E−01 8.1118E−03 2.198
MOMVO 4.0921E−04 5.9343E−05 1.5462E−02 5.6415E−03 9.5398E−01 6.1038E−02 4.8679E−01 6.2030E−03 0.771
MODA 2.1263E−03 1.1767E−03 2.4510E−02 8.7022E−03 1.3653E+00 1.2755E−01 4.2977E−01 2.2629E−02 5.789
MOGOA 1.8737E−03 1.0492E−03 1.6922E−02 7.9670E−03 1.3188E+00 4.8645E−02 4.1978E−01 3.5175E−02 13.238

LAU
MOSGA 9.5302E−04 9.2279E−05 6.5310E−03 7.1360E−04 4.0842E−01 3.4917E−02 8.5758E−01 3.5545E−04 0.664
NSGA-II 3.3323E−03 8.1927E−04 6.7627E−03 4.9315E−03 1.2972E+00 8.4240E−02 8.4817E−01 4.6373E−03 5.955
MOPSO 1.8221E−03 5.9779E−04 1.0011E−02 4.1756E−03 5.1846E−01 4.3485E−02 8.5687E−01 7.3513E−04 4.278
MOMVO 1.5446E−03 2.4845E−04 1.1203E−02 1.7781E−03 7.4731E−01 5.5283E−02 8.5506E−01 1.0551E−03 0.919
MODA 5.0490E−03 2.4400E−03 1.7775E−02 6.8958E−03 1.3971E+00 1.8529E−01 8.3814E−01 1.1068E−02 5.679
MOGOA 2.5523E−03 4.1685E−04 1.6646E−02 3.0396E−03 1.1536E+00 5.4623E−02 8.4959E−01 1.1682E−03 5.966

MUR
MOSGA 1.8128E−04 8.9043E−06 8.0259E−03 5.1952E−04 3.9104E−01 2.8267E−02 5.3516E−01 1.9547E−04 0.640
NSGA-II 1.8358E−04 7.7990E−06 8.6528E−03 7.0066E−04 4.3666E−01 3.8689E−02 5.3503E−01 2.7799E−04 1.546
MOPSO 3.1587E−04 5.0088E−05 9.7265E−03 4.0225E−03 4.8479E−01 5.8750E−02 5.2713E−01 1.7738E−03 4.052
MOMVO 8.4182E−04 1.9293E−04 1.6658E−02 4.4964E−03 1.3391E+00 4.3581E−02 5.1670E−01 3.7314E−03 1.754
MODA 1.2620E−03 3.8842E−04 3.0696E−02 1.2326E−02 1.5656E+00 1.0707E−01 5.0162E−01 9.6712E−03 11.337
MOGOA 7.8099E−04 1.4886E−04 1.1581E−02 3.3635E−03 1.3985E+00 1.4353E−01 5.1468E−01 5.7679E−03 8.595

POL
MOSGA 1.3052E−04 7.9374E−06 4.5794E−03 3.6604E−04 8.0478E−01 1.8733E−02 9.2792E−01 6.4358E−05 0.865
NSGA-II 1.5198E−04 1.5288E−05 5.9905E−03 5.9112E−04 8.3914E−01 3.2257E−02 9.2737E−01 3.5953E−04 2.328
MOPSO 1.9091E−04 2.7504E−05 8.0079E−03 4.0612E−03 8.6933E−01 3.4532E−02 9.2650E−01 1.0854E−03 2.769
MOMVO 6.9586E−04 5.6720E−04 1.0939E−02 2.6868E−03 1.3953E+00 4.9008E−02 9.1316E−01 1.6602E−02 1.481
MODA 1.2263E−03 4.6091E−04 2.7470E−02 2.4552E−02 1.6048E+00 4.5320E−02 9.0584E−01 1.7893E−02 7.566
MOGOA 1.6161E−03 2.9129E−03 9.9781E−03 5.8007E−03 1.6035E+00 8.0097E−02 9.1013E−01 1.2774E−02 7.266

SCH1
MOSGA 2.0733E−04 1.6745E−05 6.5812E−03 7.2462E−04 3.7374E−01 3.5378E−02 8.5862E−01 2.5487E−04 0.783
NSGA-II 5.1700E−03 2.3770E−03 2.5497E−02 3.1292E−02 1.7583E+00 6.9209E−02 7.4632E−01 7.3912E−02 3.047
MOPSO 2.5628E−04 4.6805E−05 7.1171E−03 1.0704E−03 4.1119E−01 3.6942E−02 8.5791E−01 4.3707E−04 3.853
MOMVO 3.2613E−04 3.2238E−05 9.9511E−03 1.0803E−03 7.2150E−01 5.5113E−02 8.5658E−01 6.6116E−04 0.413
MODA 3.5625E−03 4.5279E−03 4.1323E−02 8.9472E−02 1.4800E+00 2.3856E−01 7.9251E−01 9.6707E−02 3.022
MOGOA 4.4804E−04 4.6808E−05 1.2710E−02 1.3375E−03 9.5150E−01 5.9453E−02 8.5428E−01 8.8812E−04 6.096

SCH2
MOSGA 1.4689E−04 1.4649E−05 4.9047E−03 5.3162E−04 7.2236E−01 3.3318E−02 6.7047E−01 1.8665E−04 0.700
NSGA-II 1.5642E−04 7.4560E−06 7.6413E−03 4.9367E−04 7.6321E−01 2.5593E−02 6.6978E−01 4.1616E−04 1.810
MOPSO 1.4974E−04 4.3907E−05 5.0704E−03 9.9953E−04 6.8061E−01 3.4977E−02 6.7062E−01 1.5612E−04 4.145
MOMVO 4.5866E−04 8.6367E−05 1.2191E−02 3.4652E−03 1.2505E+00 5.8840E−02 6.5888E−01 7.0019E−03 1.660
MODA 6.6544E−04 2.1744E−04 1.3919E−02 5.9735E−03 1.5175E+00 2.5221E−01 6.5147E−01 9.6141E−03 2.739
MOGOA 8.3324E−04 1.2944E−04 9.3044E−03 3.7307E−03 1.6127E+00 3.5297E−02 6.4541E−01 1.0222E−02 6.827
a
o
A
B
S
r

average ranking for all performance indicators, which shows that
the proposed MOSGA is the most competitive algorithm of the
considered algorithms.

4.2.4. Robustness analysis and computational time
The statistical analysis of IGD, SP, ∆, and HV obtained by all

lgorithms for twenty-five benchmark functions are portrayed in
ppendix B to evaluate the robustness of MOSGA in comparison
o NSGA-II, MOPSO, MOMVO, MODA, and MOGOA for thirty inde-
endent runs. The significance of these results is represented as
ox plots. The rectangle box contains approximately the middle
0% of the performance metrics values, and the median value is
epresented as a red line. The top and bottom whiskers for each
ox show the boundary values, except for outliers. The outliers
exceptional values) are plotted using the (+) symbol. As shown
n these figures, MOSGA yields the narrowest boxplots, which
tates that the range between the worst and the best values
s relatively small for most test functions. Therefore, MOSGA
roves superior to other MOO algorithms regarding stability and
obustness.

Tables 1–5 also report the average CPU times of MOSGA,
SGA-II, MOPSO, MOMVO, MODA, and MOGOA. The proposed
 c

13
MOSGA has better computational time than other methods for
the majority of test problems (19 out of 25). Moreover, MOSGA
proves second-best for the remaining functions (i.e., test func-
tions ZDT1, ZDT2, ZDT6, SCH1, KITA, and TNK) in terms of com-
putational time.

4.2.5. Comparison of MOSGA with recent methods in previous stud-
ies

To further investigate the efficacy of the MOSGA, it is com-
pared with some recent MOO algorithms in the literature. For fair
comparisons with previous studies, population size and NFEs of
MOSGA are set to 100 and 25,000, respectively. Other parameters
of MOSGA are retained for same values from preceding section
(ng = 20, nmut = 5, αk

= 3, and GIR = 0.3).
Tables 11, 12, and 13 respectively show results of IGD, ∆,

nd HV metrics obtained by MOSGA and other prominent meth-
ds in the past literature, including Multi-objective Evolutionary
lgorithm based on Decomposition (MOEA/D) [56], Indicator-
ased Evolutionary Algorithm (IBEA) [56], Multi-objective Vertex
earch (MOVS) [57], and Multi-objective Artificial Algae Algo-
ithm (MOAAA) [58] for 36 unconstrained problems. These un-
onstrained problems include the ZDT, WFG [59], DTLZ [60],
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Table 4
Statistical results of MOO algorithms in terms of IGD, SP, ∆, and HV metrics for test functions VN1, VN2, and VN3.
Algorithms IGD SP ∆ HV Times

Average SD Average SD Average SD Average SD

VN1
MOSGA 2.4026E−04 1.1484E−05 4.4173E−02 3.9184E−03 5.5688E−01 4.6825E−02 7.4916E−01 2.4708E−03 0.846
NSGA-II 2.6414E−04 3.1405E−05 6.2540E−02 6.1898E−03 8.4364E−01 9.0383E−02 7.4779E−01 4.3098E−03 1.824
MOPSO 2.7253E−04 2.9764E−05 4.8913E−02 1.1400E−02 5.7927E−01 4.0662E−02 7.2859E−01 8.5251E−03 6.938
MOMVO 4.1119E−04 8.9159E−05 4.8966E−02 8.2547E−03 9.0636E−01 6.6118E−02 7.0338E−01 3.4275E−02 2.053
MODA 3.4439E−04 5.8856E−05 7.6369E−02 1.4294E−02 1.2983E+00 8.1720E−02 7.2918E−01 9.0572E−03 7.541
MOGOA 3.8280E−04 5.0504E−05 6.0721E−02 1.1314E−02 1.2985E+00 8.3735E−02 7.1728E−01 1.1484E−02 7.107

VN2
MOSGA 2.8526E−04 1.3243E−05 1.9369E−02 2.2910E−03 4.7504E−01 4.8070E−02 9.3451E−01 4.4318E−04 0.936
NSGA-II 2.9220E−04 1.0323E−05 2.7947E−02 3.2063E−03 9.7279E−01 8.1007E−02 9.3244E−01 1.0103E−03 2.158
MOPSO 5.8519E−04 8.9171E−05 2.7308E−02 1.0592E−02 5.0744E−01 9.4796E−02 9.0076E−01 1.2648E−02 4.477
MOMVO 3.8813E−04 6.0734E−05 3.2634E−02 6.5127E−03 1.0521E+00 6.1625E−02 9.2746E−01 3.7965E−03 1.516
MODA 5.4881E−04 9.5762E−05 5.6247E−02 2.8214E−02 1.4305E+00 1.2322E−01 9.2012E−01 5.3337E−03 6.052
MOGOA 4.7571E−04 5.6858E−05 3.2343E−02 9.0464E−03 1.3044E+00 9.1402E−02 9.2343E−01 3.2122E−03 7.156

VN3
MOSGA 1.8974E−04 1.7277E−05 1.5378E−02 1.8929E−03 4.4079E−01 3.2831E−02 8.6225E−01 1.7509E−04 0.975
NSGA-II 2.0745E−04 5.2902E−05 1.6582E−02 1.6418E−03 7.2965E−01 9.0953E−02 8.5996E−01 5.2844E−04 2.000
MOPSO 2.3204E−04 7.3378E−05 1.5992E−02 3.1391E−03 4.5246E−01 5.4386E−02 8.6207E−01 6.9021E−04 3.827
MOMVO 9.4343E−04 1.0404E−03 2.5820E−02 5.3427E−03 1.0563E+00 6.9225E−02 8.5168E−01 4.9058E−03 1.387
MODA 4.4523E−04 1.2796E−04 3.4876E−02 9.8977E−03 1.3666E+00 1.0440E−01 8.4082E−01 7.0928E−03 6.853
MOGOA 7.0605E−04 2.9969E−04 2.5044E−02 5.6400E−03 1.3855E+00 6.2668E−02 8.3922E−01 7.2207E−03 7.614
Fig. 13. Pareto optimal fronts generated by MOSGA for test functions VN1, VN2, and VN3.
LZ09 [61] test suites, OKA1, OKA2 [62], VN2, VN3, SCH1, FON2,
KUR, and POL. In these test functions, 27 test problems contain
two objectives and 9 test problems contain three objectives. In-
specting the results in Table 11, MOSGA outperforms other algo-
rithms for IGD metric for 28 out of 36 test functions (i.e., 77.78%).
For ∆ metric, MOSGA produces the best results for 15 out of 36
problems. Furthermore, MOSGA shows very competitive results
14
in the rest of the test problems. Table 13 also shows that MOSGA
obtains pointedly better results than IBEA, MOEA/D, MOVS, and
MOAAA for most test problems regarding the HV metric. There-
fore, it is evident that MOSGA yields very competitive results and
tends to outperform IBEA, MOEA/D, MOVS, and MOAAA for these
test problems. Pareto fronts obtained by MOSGA for WFG and
DTLZ test suites are illustrated in Appendix C. It can be observed
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Table 5
Statistical results of MOO algorithms in terms of IGD, SP, ∆, and HV metrics for test functions BEL, BINH2, CONSTR, KITA, SRN, and TNK.
Algorithms IGD SP ∆ HV Times

Average SD Average SD Average SD Average SD

BEL
MOSGA 1.8438E−04 2.3824E−05 7.8350E−03 5.4055E−04 3.8809E−01 2.7503E−02 5.8139E−01 3.4228E−04 1.023
NSGA-II 1.8662E−04 5.2104E−06 8.3841E−03 7.0896E−04 4.4638E−01 2.9484E−02 5.8078E−01 2.9727E−04 2.808
MOPSO 2.6993E−04 2.8677E−05 8.0553E−03 9.4557E−04 4.1962E−01 3.4954E−02 5.7508E−01 1.3858E−03 4.273
MOMVO 1.0343E−03 2.0894E−04 1.4691E−02 4.7037E−03 1.4242E+00 4.4463E−02 5.5596E−01 5.6070E−03 2.320
MODA 1.3265E−03 5.4157E−04 3.1296E−02 9.5831E−03 1.5608E+00 1.1574E−01 5.4768E−01 1.0595E−02 9.613
MOGOA 3.6936E−04 5.8797E−05 1.1063E−02 1.7810E−03 8.6272E−01 1.0324E−01 5.7508E−01 2.2390E−03 8.799

BINH2
MOSGA 7.0076E−05 5.7899E−06 8.3983E−03 6.8836E−04 4.3699E−01 3.2655E−02 8.4313E−01 1.3995E−04 0.989
NSGA-II 7.1629E−05 3.4167E−06 7.9894E−03 6.6989E−04 4.4510E−01 2.2584E−02 8.4243E−01 2.3863E−04 2.289
MOPSO 1.1201E−04 3.2452E−05 7.4839E−03 1.8446E−03 4.4558E−01 3.6903E−02 8.4157E−01 4.5709E−04 4.131
MOMVO 2.7582E−04 4.2267E−05 1.5480E−02 2.6545E−03 1.3184E+00 5.3066E−02 8.2780E−01 2.8513E−03 1.973
MODA 3.6665E−04 1.4300E−04 2.3740E−02 7.3140E−03 1.5296E+00 1.3206E−01 8.2418E−01 6.9513E−03 6.894
MOGOA 2.6762E−04 7.9572E−05 1.1745E−02 3.7379E−03 1.3234E+00 2.3755E−01 8.2884E−01 5.9038E−03 8.385

CONSTR
MOSGA 2.0530E−04 7.0184E−06 7.9547E−03 4.1069E−04 4.2636E−01 1.8244E−02 8.1439E−01 2.6238E−04 0.878
NSGA-II 3.2425E−04 5.3987E−05 9.2990E−03 1.4418E−03 7.0026E−01 3.4383E−02 8.0688E−01 1.6227E−03 3.599
MOPSO 4.8622E−04 1.6302E−04 1.2381E−02 3.5422E−03 6.4254E−01 9.0661E−02 8.0848E−01 2.1126E−03 2.969
MOMVO 5.5924E−04 1.0518E−04 1.4872E−02 2.4114E−03 1.1003E+00 5.8542E−02 8.0437E−01 2.9763E−03 1.650
MODA 6.3363E−04 1.7059E−04 1.9968E−02 4.8989E−03 1.0765E+00 1.2320E−01 7.9454E−01 6.3596E−03 6.608
MOGOA 1.8417E−03 8.1807E−04 1.0627E−02 5.2680E−03 1.5581E+00 5.7912E−02 7.7780E−01 1.0012E−02 8.278

KITA
MOSGA 2.1913E−04 9.2652E−06 8.0256E−03 4.4398E−03 3.7540E−01 5.9872E−02 7.1075E−01 3.5143E−04 1.186
NSGA-II 8.7909E−04 1.8530E−04 1.2942E−02 2.7899E−02 1.0514E+00 8.6308E−02 6.8619E−01 5.4679E−03 4.154
MOPSO 6.4165E−04 1.8884E−04 3.0230E−02 2.0007E−02 6.9790E−01 1.2307E−01 7.0181E−01 4.1270E−03 3.320
MOMVO 4.2979E−04 5.7549E−05 1.3318E−02 3.7902E−03 7.2277E−01 4.8203E−02 7.0327E−01 1.5082E−03 0.994
MODA 2.8172E−03 1.0178E−03 8.5146E−02 5.7922E−02 1.3596E+00 2.2269E−01 6.2512E−01 3.2756E−02 5.906
MOGOA 2.3397E−03 8.3664E−04 1.4170E−02 1.6730E−02 1.4058E+00 1.2099E−01 6.4141E−01 2.6602E−02 6.974

SRN
MOSGA 9.4943E−05 7.1727E−06 6.7433E−03 5.6370E−04 3.8925E−01 3.1421E−02 6.1867E−01 3.1657E−04 1.178
NSGA-II 9.6368E−05 3.7905E−06 8.2943E−03 5.5062E−04 4.3954E−01 2.5944E−02 6.1787E−01 4.5630E−04 4.216
MOPSO 1.2189E−04 1.6953E−05 7.8738E−03 1.5279E−03 4.3286E−01 3.6736E−02 6.1600E−01 9.8100E−04 4.349
MOMVO 3.6465E−04 8.7014E−05 1.3957E−02 2.6721E−03 1.2243E+00 7.3563E−02 6.0166E−01 5.0320E−03 1.878
MODA 5.5064E−04 7.5997E−05 1.8192E−02 5.8258E−03 1.5869E+00 3.9668E−02 5.8327E−01 5.0529E−03 7.422
MOGOA 4.8430E−04 7.1627E−05 1.6728E−02 4.8290E−03 1.5369E+00 4.8583E−02 5.9319E−01 4.9442E−03 8.281

TNK
MOSGA 2.2510E−04 1.3403E−05 5.1168E−03 5.2752E−04 7.4258E−01 2.7507E−02 4.2484E−01 2.9818E−04 1.503
NSGA-II 1.8469E−03 6.7056E−04 7.1883E−03 5.9216E−03 1.6468E+00 5.7394E−02 3.9733E−01 5.1512E−03 8.835
MOPSO 1.6227E−03 5.5813E−04 1.8194E−02 7.5789E−03 9.3330E−01 5.0875E−02 3.9556E−01 7.5622E−03 2.379
MOMVO 4.6255E−04 6.9991E−05 9.0356E−03 1.5071E−03 9.2842E−01 4.1290E−02 4.1865E−01 1.9299E−03 0.771
MODA 3.3969E−03 1.0549E−03 5.9529E−02 4.7971E−02 1.1082E+00 2.6983E−01 3.5735E−01 1.6639E−02 6.161
MOGOA 2.6375E−03 1.0838E−03 6.2072E−03 2.0918E−03 1.3896E+00 9.2119E−02 3.9425E−01 1.2420E−02 6.657
that MOSGA fruitfully converges on the true Pareto fronts with a
high diversity of solutions.

Table 14 presents comparisons of MOSGA and other meth-
ds in the literature, including Micro-Genetic Algorithm (Micro-
A), Pareto Archived Evolution Strategy (PAES), Multi-Objective
uckoo Search (MOCS), Constrained Multi-Objective Particle
warm Optimization (CMOPSO), MOWCA [15], MOALO [18],
ulti-Objective Colliding Bodies Optimization (MOCBO), MOSOS

21], Strength Pareto Evolutionary Algorithm 2 (SPEA2), Multi-
bjective Self-Adaptive Differential Evolution (MOSADE) [55],
nd Non-Dominated Sorting Grey Wolf Optimizer (NS-GWO) [63]
or some constrained test functions. It is obviously noted from
able 14 that MOSGA also outperforms other MOO algorithms in
he previous studies for the majority of test problems, especially
or the GD metric.

.3. Multi-objective engineering design problems

Although multi-objective benchmark test functions are very
ffective in testing an algorithm, dealing with real-world op-
imization problems is always more challenging. To assess its
pplicability, the present study further examines the proposed
15
MOSGA with five multi-objective engineering design problems.
Mathematical formulations of engineering design problems are
given in Appendix D. Similar to the previous section, the MOSGA
is independently run thirty times for each problem, and each run
consisted of 10,000 NFEs. The optimization results of MOSGA are
compared with outcomes from NSGA-II, MOPSO, MOMVO, MODA,
and MOGOA. The control parameters of these algorithms and the
size of the Pareto archive are kept the same to test the benchmark
problems. Since true Pareto optimal fronts for engineering design
problems are unavailable in the literature, six considered MOO
algorithms are compared using SP and HV metrics.

4.3.1. Four-bar truss design problem
Table 15 gives the statistical results of SP and HV indicators

produced by each considered algorithm. Based on the average
SP values in Table 15, MOSGA shows superior performance to
maintain a suitable distribution of the obtained Pareto optimal
solutions. In addition to achieving the best SP value, MOSGA
has the advantage of finding a wide range of solutions having
uniform spread that is shown in the highest HV values obtained
by MOSGA. Moreover, the lower SD values for the SP and HV
metrics indicate better stability of solutions generated by MOSGA
compared with the other optimizers.
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Fig. 14. Pareto optimal fronts generated by MOSGA for test functions BEL, BINH2, CONSTR, KITA, SRN, and TNK.
Table 6
Results of Wilcoxon rank-sum test of MOSGA versus other algorithms based on IGD metric.
MOSGA versus NSGA-II MOPSO MOMVO MODA MOGOA

p-value Signed p-value Signed p-value Signed p-value Signed p-value Signed

ZDT1 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

ZDT2 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

ZDT3 3.02E−11 + 3.02E−11 + 1.96E−01 – 3.02E−11 + 3.02E−11 +

ZDT6 3.02E−11 + 3.01E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

BINH1 1.31E−08 + 2.61E−10 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

DEB1 3.51E−02 + 8.88E−06 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

DEB2 8.84E−07 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

DEB3 1.12E−02 + 2.67E−09 + 3.16E−10 + 3.02E−11 + 3.02E−11 +

FON1 2.53E−04 + 7.30E−04 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

FON2 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

KUR 1.61E−10 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

LAU 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

MUR 4.83E−01 – 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

POL 1.70E−08 + 4.08E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

SCH1 3.02E−11 + 1.73E−07 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

SCH2 1.77E−03 + 5.37E−02 – 3.02E−11 + 3.02E−11 + 3.02E−11 +

VN1 3.37E−04 + 9.83E−08 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

VN2 1.54E−01 – 3.02E−11 + 3.69E−11 + 3.02E−11 + 3.02E−11 +

VN3 4.55E−01 – 5.01E−02 – 3.02E−11 + 3.02E−11 + 3.02E−11 +

BEL 7.30E−04 + 3.16E−10 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

BINH2 3.92E−02 + 6.70E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

CONSTR 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

KITA 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

SRN 2.61E−02 + 6.72E−10 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

TNK 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
Fig. 15 depicts a graphical representation of Pareto optimal
ront generated by MOSGA, in which extreme solutions obtained
y MOSGA are (1727.7393, 0.0027) and (1174.1999, 0.0341). This
areto front obtained by MOSGA for this problem is very consis-
ent with the Pareto optimal front available in the literature [15].

.3.2. Speed reducer design problem
Table 16 presents a comparative result of SP and HV indica-

ors obtained by MOSGA, NSGA-II, MOPSO, MOMVO, MODA, and
OGOA. The statistical results in Table 16 denote that the average
16
SP value obtained by MOSGA ranks first. Therefore, MOSGA finds
a more evenly distributed Pareto optimal front compared with
NSGA-II, MOPSO, MOMVO, MODA, and MOGOA. Likewise, MOSGA
also surpasses the other methods for HV indicators. Thus, MOSGA
offers a diverse set of Pareto optimal solutions having a good
spread.

Moreover, Fig. 15 depicts the graphical representation of the
Pareto optimal front generated by MOSGA, which clarifies the re-
sults presented in Table 16. The extreme Pareto solutions
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Table 7
Results of Wilcoxon rank-sum test of MOSGA versus other algorithms based on SP metric.
MOSGA versus NSGA-II MOPSO MOMVO MODA MOGOA

p-value Signed p-value Signed p-value Signed p-value Signed p-value Signed

ZDT1 3.02E−11 + 3.02E−11 + 3.01E−07 + 3.02E−11 + 9.06E−08 +

ZDT2 3.02E−11 + 6.55E−04 + 8.77E−02 – 1.02E−05 + 3.16E−05 +

ZDT3 3.02E−11 + 3.02E−11 + 2.03E−07 + 3.02E−11 + 2.92E−09 +

ZDT6 3.02E−11 + 3.02E−11 + 3.02E−11 + 9.76E−10 + 1.29E−09 +

BINH1 5.57E−10 + 6.84E−01 – 3.02E−11 + 3.02E−11 + 5.07E−10 +

DEB1 1.44E−02 + 3.01E−04 + 1.07E−09 + 3.34E−11 + 2.61E−02 +

DEB2 2.15E−10 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 5.61E−05 +

DEB3 3.34E−11 + 8.50E−02 – 3.02E−11 + 3.02E−11 + 3.02E−11 +

FON1 3.02E−11 + 2.01E−04 + 3.02E−11 + 3.02E−11 + 1.96E−10 +

FON2 5.53E−08 + 8.77E−02 – 3.02E−11 + 5.57E−10 + 1.29E−06 +

KUR 1.67E−01 – 6.67E−03 + 8.88E−01 – 4.80E−07 + 9.82E−01 –
LAU 3.55E−01 – 2.49E−06 + 3.34E−11 + 5.57E−10 + 3.02E−11 +

MUR 2.01E−04 + 9.23E−01 – 3.02E−11 + 3.02E−11 + 1.16E−07 +

POL 3.16E−10 + 1.89E−04 + 3.02E−11 + 3.02E−11 + 8.29E−06 +

SCH1 1.68E−03 + 8.50E−02 – 3.69E−11 + 3.08E−08 + 3.02E−11 +

SCH2 3.02E−11 + 8.53E−01 – 3.02E−11 + 6.72E−10 + 2.68E−06 +

VN1 3.69E−11 + 1.15E−01 – 8.31E−03 + 3.02E−11 + 1.29E−09 +

VN2 1.09E−10 + 1.86E−03 + 8.99E−11 + 2.87E−10 + 2.03E−09 +

VN3 3.78E−02 + 7.62E−01 – 1.33E−10 + 3.02E−11 + 8.89E−10 +

BEL 3.50E−03 + 7.73E−01 – 1.56E−08 + 3.02E−11 + 1.07E−09 +

BINH2 5.75E−02 – 2.27E−03 + 3.02E−11 + 3.02E−11 + 4.64E−05 +

CONSTR 3.52E−07 + 1.85E−08 + 3.02E−11 + 3.02E−11 + 2.42E−02 +

KITA 7.84E−01 – 2.87E−10 + 1.55E−09 + 4.50E−11 + 1.17E−03 +

SRN 1.96E−10 + 5.26E−04 + 3.02E−11 + 3.02E−11 + 4.50E−11 +

TNK 1.19E−01 – 3.02E−11 + 3.02E−11 + 3.02E−11 + 1.33E−02 +
Table 8
Results of Wilcoxon rank-sum test of MOSGA versus other algorithms based on ∆ metric.
MOSGA versus NSGA-II MOPSO MOMVO MODA MOGOA

p-value Signed p-value Signed p-value Signed p-value Signed p-value Signed

ZDT1 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

ZDT2 3.02E−11 + 3.02E−11 + 3.00E−11 + 3.02E−11 + 3.02E−11 +

ZDT3 3.18E−03 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

ZDT6 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

BINH1 8.89E−10 + 5.87E−04 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

DEB1 2.00E−06 + 8.30E−01 – 3.02E−11 + 3.02E−11 + 3.02E−11 +

DEB2 3.35E−08 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

DEB3 2.60E−08 + 2.03E−09 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

FON1 9.92E−11 + 3.04E−01 – 3.02E−11 + 3.02E−11 + 3.02E−11 +

FON2 2.39E−08 + 1.95E−03 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

KUR 6.07E−11 + 1.78E−10 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

LAU 3.02E−11 + 3.82E−10 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

MUR 1.17E−05 + 1.86E−09 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

POL 2.13E−05 + 8.89E−10 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

SCH1 3.02E−11 + 3.56E−04 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

SCH2 5.46E−06 + 4.08E−05 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

VN1 3.02E−11 + 1.02E−01 – 3.02E−11 + 3.02E−11 + 3.02E−11 +

VN2 3.02E−11 + 3.48E−01 – 3.02E−11 + 3.02E−11 + 3.02E−11 +

VN3 5.49E−11 + 4.38E−01 – 3.02E−11 + 3.02E−11 + 3.02E−11 +

BEL 7.77E−09 + 6.20E−04 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

BINH2 2.71E−01 – 4.12E−01 – 3.02E−11 + 3.02E−11 + 3.02E−11 +

CONSTR 3.02E−11 + 3.34E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

KITA 3.02E−11 + 5.49E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

SRN 4.11E−07 + 2.60E−05 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

TNK 3.02E−11 + 3.02E−11 + 3.02E−11 + 2.00E−06 + 3.02E−11 +
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yielded by MOSGA are (6024.9005, 694.7161) and (3008.0756,
1076.2886).

4.3.3. Disk brake design problem
Table 17 provides final statistical results for SP and HV met-

ics attained by each considered optimizer. Table 17 shows that
OSGA proves its superiority over NSGA-II, MOPSO, MOMVO,
ODA, and MOGOA for the SP metric. Table 17 reveals that

here is a considerable difference between the average SP values
ielded by MOSGA and MOGOA as the second-best techniques
ith a corresponding value of 7.3538E−03 and 1.2720E−02,
 i

17
espectively. Thus, the solutions of MOSGA prove a better distri-
ution than those of other algorithms. Additionally, the average
V values produced by NSGA-II, MOPSO, MOMVO, MODA, and
OGOA are not as good as the ones of MOSGA. Since HV is
criterion to assess the convergence and diversity of a MOO

echnique, these results indicate that MOSGA has more excellent
earch performance and obtains better Pareto optimal fronts.
Fig. 15 portrays the Pareto optimal front obtained by MOSGA.

s a result, MOSGA finds extreme solutions with values between
2.7794, 2.0751) and (0.1274, 16.6549). The obtained Pareto front

s either the same or better than the Pareto front found in [15],
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Fig. 15. Pareto optimal front generated by MOSGA: four-bar truss design problem, speed reducer design problem, disk brake design problem, welded beam design
problem, and spring design problem.
Table 9
Results of Wilcoxon rank-sum test of MOSGA versus other algorithms based on HV metric.
MOSGA versus NSGA-II MOPSO MOMVO MODA MOGOA

p-value Signed p-value Signed p-value Signed p-value Signed p-value Signed

ZDT1 1.21E−12 + 2.95E−11 + 3.02E−11 + 1.72E−12 + 1.62E−11 +

ZDT2 1.21E−12 + 6.48E−12 + 3.02E−11 + 1.21E−12 + 2.37E−12 +

ZDT3 3.02E−11 + 3.02E−11 + 3.02E−11 + 1.44E−11 + 2.80E−11 +

ZDT6 1.21E−12 + 1.39E−11 + 3.02E−11 + 2.37E−12 + 1.62E−11 +

BINH1 3.02E−11 + 6.72E−10 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

DEB1 1.38E−02 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

DEB2 6.70E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

DEB3 5.57E−03 + 1.15E−01 – 3.02E−11 + 3.02E−11 + 3.02E−11 +

FON1 3.02E−11 + 6.70E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

FON2 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

KUR 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

LAU 3.02E−11 + 5.19E−07 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

MUR 5.37E−02 – 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

POL 6.70E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

SCH1 3.02E−11 + 3.50E−09 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

SCH2 1.78E−10 + 1.37E−03 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

VN1 3.87E−01 – 1.33E−10 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

VN2 3.69E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

VN3 3.02E−11 + 2.90E−01 – 3.02E−11 + 3.02E−11 + 3.02E−11 +

BEL 2.60E−08 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

BINH2 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

CONSTR 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

KITA 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

SRN 5.46E−09 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +

TNK 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 +
Table 10
The average ranking of MOO algorithms by Friedman test for all benchmark
problems.
Algorithms IGD SP ∆ HV

MOSGA 1.2253 1.7213 1.2733 1.1453
NSGA-II 2.9080 3.1667 2.9240 3.0480
MOPSO 3.1387 3.0140 2.3393 3.0840
MOMVO 3.5533 4.1007 3.9753 3.5987
MODA 5.2693 5.2893 5.3600 5.2000
MOGOA 4.9053 3.7080 5.1280 4.9240
18
which confirms the exploratory ability of the MOSGA to detect
accurate results.

4.3.4. Welded beam design problem
Table 18 illustrates results for SP and HV indicators yielded by

the MOSGA, NSGA-II, MOPSO, MOMVO, MODA, and MOGOA. The
results of the average SP values in Table 18 depict that MOSGA
has an SP value of 7.0178E−03 and MOMVO has an SP value
of 1.4265E−02, which place them in the first and second ranks,
respectively. Likewise, MOSGA has the best performance among
methods based on the average HV value. Hence, MOSGA has a
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Table 11
Comparative results of MOSGA and previous studies in terms of IGD metric for ZDT, WFG, DTLZ, LZ09 test suites, OKA1, OKA2, VN2, VN3, POL, SCH1, FON2, and KUR
Test functions MOSGA IBEA [56] MOEA/D [56] MOVS [57] MOAAA [58]

Average SD Average SD Average SD Average SD Average SD

ZDT1 1.8461E−04 8.5104E−06 1.64E−04 5.1E−06 5.31E−04 1.7E−04 1.99E−04 2.1E−05 2.30E−04 9.8E−06
ZDT2 1.9024E−04 6.6743E−06 5.42E−04 3.7E−05 4.40E−04 1.6E−04 4.74E−04 1.0E−04 2.38E−04 1.4E−05
ZDT3 7.6955E−03 1.9169E−05 1.51E−03 7.2E−04 1.70E−03 7.6E−04 1.30E−04 4.4E−06 1.58E−04 9.7E−06
ZDT4 5.8685E−05 2.8192E−06 2.23E−02 3.1E−03 1.10E−02 7.4E−03 2.92E−02 1.3E−02 2.40E−03 2.9E−03
ZDT6 1.3596E−04 8.5432E−06 2.55E−04 1.0E−05 1.42E−04 1.1E−05 2.19E−04 1.5E−05 2.51E−04 1.3E−05
WFG1 6.0877E−04 1.5395E−04 3.67E−03 2.2E−03 6.70E−03 1.8E−03 2.81E−03 1.2E−03 4.33E−04 2.9E−04
WFG2 5.5474E−05 2.1195E−06 3.76E−03 9.7E−04 4.38E−04 1.9E−05 1.31E−04 4.5E−06 1.25E−04 4.6E−06
WFG3 5.8407E−05 2.2498E−06 1.30E−04 2.9E−06 1.36E−04 4.8E−07 1.44E−04 6.2E−06 1.47E−04 7.4E−06
WFG4 6.5071E−05 3.6444E−06 5.22E−04 3.4E−05 2.28E−04 3.6E−05 1.56E−04 4.3E−06 1.54E−04 4.9E−05
WFG5 2.5049E−04 2.2390E−06 3.71E−04 3.3E−05 1.24E−04 9.0E−07 1.32E−04 1.9E−05 1.35E−04 1.3E−05
WFG6 2.1797E−04 1.4976E−04 8.54E−04 2.0E−04 2.28E−04 1.8E−06 2.38E−04 2.7E−05 2.30E−04 1.5E−05
WFG7 6.9975E−05 2.8541E−06 5.14E−04 3.2E−05 1.48E−04 7.4E−07 1.53E−04 6.0E−06 1.52E−04 9.0E−05
WFG9 2.1240E−04 3.0292E−04 4.83E−04 4.6E−05 2.41E−04 5.8E−06 2.38E−04 1.2E−05 2.30E−04 1.3E−05
DTLZ1 1.2210E−03 1.8537E−03 4.17E−03 3.4E−04 7.94E−03 6.7E−03 4.01E−03 4.2E−03 4.59E−03 5.4E−03
DTLZ2 7.4992E−04 8.0826E−06 1.40E−03 2.9E−05 5.72E−03 1.4E−07 7.61E−04 3.8E−05 7.61E−04 3.6E−05
DTLZ4 7.7487E−04 2.2635E−05 5.11E−03 2.9E−03 1.16E−02 1.1E−03 1.19E−03 1.7E−04 1.23E−03 1.1E−04
DTLZ5 8.4748E−05 5.6033E−06 1.02E−04 5.2E−06 1.48E−03 2.9E−09 2.05E−05 1.2E−06 1.96E−05 9.1E−07
DTLZ6 8.4558E−05 5.6982E−06 4.49E−04 1.1E−04 3.82E−03 3.3E−10 5.10E−05 3.4E−06 5.70E−05 3.0E−06
DTLZ7 6.1450E−04 5.5264E−05 1.59E−02 8.7E−03 2.84E−02 1.3E−03 2.22E−03 1.0E−04 2.27E−03 1.6E−04
LZ09_F1 2.1989E−04 3.6404E−05 6.84E−04 3.3E−04 2.36E−04 1.5E−05 5.09E−04 6.0E−05 4.38E−04 2.3E−05
LZ09_F2 1.0524E−03 8.6927E−05 8.26E−03 2.7E−03 4.89E−03 2.1E−03 5.67E−03 6.8E−04 3.43E−03 1.0E−03
LZ09_F3 7.3878E−04 2.8999E−04 6.65E−03 3.2E−03 5.16E−03 3.1E−03 3.98E−03 9.1E−04 2.43E−03 2.9E−04
LZ09_F4 9.8521E−04 3.8067E−04 6.10E−03 1.1E−03 2.98E−03 6.4E−04 3.84E−03 6.6E−04 2.53E−03 6.9E−04
LZ09_F5 5.1803E−04 1.2566E−04 4.58E−03 2.2E−03 4.03E−03 2.5E−03 3.05E−03 3.4E−04 1.89E−03 3.0E−04
LZ09_F6 1.9029E−03 3.4620E−04 1.62E−02 2.4E−03 1.92E−02 9.8E−04 5.78E−03 1.3E−03 6.19E−03 1.2E−03
LZ09_F7 2.4141E−03 4.1362E−04 1.92E−02 5.5E−03 9.18E−03 6.3E−03 1.23E−02 4.0E−03 1.15E−02 3.9E−03
LZ09_F8 2.4426E−03 4.2491E−04 1.69E−02 5.7E−03 1.06E−02 3.1E−03 1.20E−02 2.3E−03 1.23E−02 2.8E−03
LZ09_F9 1.2852E−03 9.5022E−05 9.02E−03 2.6E−03 4.80E−03 1.8E−03 5.75E−03 5.7E−04 3.89E−03 1.2E−03
OKA1 2.6251E−03 1.3872E−03 4.94E−03 2.4E−03 2.73E−03 9.2E−04 2.65E−03 9.6E−04 3.54E−03 4.4E−04
OKA2 8.7693E−03 1.2262E−03 1.95E−02 9.1E−03 1.71E−02 9.1E−03 9.57E−03 1.2E−03 1.17E−02 5.6E−04
VN2 3.1659E−04 2.7703E−05 1.47E−03 3.6E−04 2.91E−03 1.3E−06 3.52E−04 4.8E−05 3.24E−04 3.5E−05
VN3 1.5954E−04 7.5581E−06 4.37E−03 2.6E−04 7.50E−03 1.5E−06 1.83E−04 2.0E−05 1.76E−04 2.6E−05
POL 1.2707E−04 5.6662E−06 1.07E−03 6.3E−04 7.87E−04 1.1E−03 1.05E−04 6.7E−06 9.42E−05 5.0E−06
SCH1 1.9950E−04 1.1256E−05 2.61E−02 2.5E−02 2.65E−02 1.5E−02 5.84E−04 2.2E−05 3.13E−02 2.3E−02
FON2 1.9220E−04 6.2726E−06 2.59E−04 7.5E−06 2.04E−04 4.8E−07 3.19E−04 1.4E−05 2.82E−04 1.0E−05
KUR 1.9671E−04 1.1600E−05 1.28E−03 1.7E−04 1.74E−04 1.5E−06 1.76E−04 9.0E−06 1.59E−04 8.1E−06
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better possibility to detect a broader range of Pareto optimal
solutions for both objective functions and offer more choices for
decision-makers to choose their optimal design from a Pareto
optimal set.

Fig. 15 clarifies the discussion in Table 18 by depicting the
areto optimal front generated by MOSGA. From Fig. 15, the
areto optimal solutions yielded by MOSGA are between the
ange of (35.4929, 0.000439) and (1.8991, 0.0103).

.3.5. Spring design problem
Table 19 shows a comparison of SP and HV indicators obtained

y the MOSGA, NSGA-II, MOMVO, MOMVO, MODA, and MOGOA.
ccording to Table 19, MOSGA outperforms other optimizers in
roviding a wider variety of Pareto optimal solutions with better
istribution. The best average values and minimum deviation of
P and HV metrics attained by the MOSGA support this claim. It
oints out that MOSGA has superior convergence and diversity
n comparison to other techniques. To clarify further, Fig. 15
ortrays the Pareto optimal front obtained by MOSGA. The ex-
reme Pareto optimal solutions yielded by MOSGA are (26.4782,
8018.6041) and (2.8019, 183667.1169).
Table 20 lists the average rankings of MOO algorithms based

n the Friedman rank test for five multi-objective engineering
roblems. Results of the Friedman test show that MOSGA is
he most efficient method. The MOSGA yields the best average
anking for the SP and HV indicators.

.4. Sensitivity analysis for initial parameters of MOSGA

Selecting the most efficient initial parameters is one of the
ost critical concerns for optimization algorithms. To assess the
19
effect of initial parameters on the performance of MOSGA, we
perform a sensitivity analysis of the number of search group
members (ng ), perturbation constant (αk), and global search ratio
(GIR).

Table 21 depicts the sensitivity of the perturbation coefficient
(αk) in terms of values for different performance metrics, in-
cluding the IGD, SP, ∆, and HV metrics for test functions BINH1
and BINH2. Without loss of generality, the values of αk are set
1, 2, 3, 4, and 5, respectively. Value for αk has an impact on
the exploration and exploitation phases in MOSGA. Generally, a
high value of αk reduces an appropriate search around the best
olutions. Therefore, MOSGA may not be able to obtain the global
ptimal solution. Meanwhile, a low value for αk reduces the
earch intensity. Hence, the MOSGA focuses on the vicinity of the
est solutions without paying more attention to other domains.
onsequently, MOSGA can be stuck in the local Pareto optimum
or complex problems. As can be seen in Table 21, a value αk of 3
btains the best solutions with the best values for IGD, SP, ∆, and
V indicators. Therefore, it can be deduced that a suitable value
or αk is 3.

The number of search group members (ng ) is the second
arameter, which can affect the performance of MOSGA. The
ensitivity of ng for IGD, SP, ∆, and HV metrics for test functions
INH1 and BINH2 are presented in Table 22. Without loss of
enerality, the value of ng is tuned to change from 10 to 30 with
step size of 5. From these results, the value for ng of 20 can be
onsidered a proper value, which works well in terms of IGD, SP,
, and HV indicators.
An optimization engine with a proper balance between global

nd local search is vital. Thus, a sensitivity analysis of both phases
n the performance of MOSGA is provided in Table 23. Without
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Table 12
Comparative results of MOSGA and previous studies in terms of ∆ metric for ZDT, WFG, DTLZ, LZ09 test suites, OKA1, OKA2, VN2, VN3, POL, SCH1, FON2, and KUR
Test functions MOSGA IBEA [56] MOEA/D [56] MOVS [57] MOAAA [58]

Average SD Average SD Average SD Average SD Average SD

ZDT1 3.5363E−01 2.3411E−02 2.97E−01 1.8E−02 3.66E−01 4.8E−02 4.64E−01 3.1E−02 6.40E−01 5.1E−02
ZDT2 3.2472E−01 1.3231E−02 3.37E+01 2.3E−02 3.25E−01 9.4E−02 5.19E−01 3.9E−02 6.79E−01 6.5E−02
ZDT3 7.8518E−01 1.2423E−02 1.19E+00 6.9E−02 9.93E−01 3.2E−02 7.55E−01 9.0E−03 8.08E−01 2.4E−02
ZDT4 3.8224E−01 3.5226E−02 1.11E+00 5.6E−02 9.69E−01 1.7E−01 1.23E+00 1.1E−01 5.85E−01 1.7E−01
ZDT6 3.1877E−01 2.8611E−02 4.15E−01 4.8E−02 1.54E−01 8.3E−03 5.70E−01 4.5E−02 7.86E−01 3.5E−02
WFG1 7.6689E−01 3.8033E−02 8.74E−01 6.9E−02 1.07E+00 1.5E−01 6.67E−01 1.9E−01 6.46E−01 9.6E−02
WFG2 7.8831E−01 8.9313E−03 1.25E+00 7.9E−02 1.11E+00 5.6E−03 7.88E−01 8.7E−03 7.82E−01 1.02-02
WFG3 3.4651E−01 3.1399E−02 2.55E−01 2.8E−02 3.45E−01 8.6E−04 3.24E−01 3.1E−02 3.16E−01 2.4E−02
WFG4 3.3862E−01 2.4868E−02 5.13E−01 3.4E−02 5.10E−01 5.2E−02 3.55E−01 2.3E−02 3.27E−01 2.5E−02
WFG5 3.9142E−01 2.7003E−02 5.85E−01 7.3E−02 4.53E−01 5.0E−03 3.98E−01 2.8E−02 4.29E−01 3.3E−02
WFG6 3.8648E−01 2.9657E−02 5.26E−01 2.8E−02 4.13E−01 6.4E−03 3.49E−01 2.7E−02 3.30E−01 2.9E−02
WFG7 3.9659E−01 2.9020E−02 5.15E−01 2.8E−02 4.14E−01 6.6E−03 3.75E−01 2.7E−02 3.44E−01 2.9E−02
WFG9 3.7591E−01 4.0468E−02 5.00E−01 4.3E−02 4.48E−01 1.4E−02 3.31E−01 2.9E−02 3.29E−01 2.6E−02
DTLZ1 4.9744E−01 1.3710E−01 1.64E+00 1.1E−01 1.09E+00 8.9E−02 7.58E−01 5.9E−02 7.38E−01 6.7E−02
DTLZ2 4.7569E−01 4.1797E−02 5.83E−01 5.0E−02 1.00E+00 2.1E−05 6.58E−01 4.1E−02 6.70E−01 3.9E−02
DTLZ4 4.9120E−01 5.1293E−02 7.04E−01 1.4E−01 1.02E+00 8.4E−02 6.54E−01 4.02–02 6.40E−01 3.6E−02
DTLZ5 5.3191E−01 5.9106E−02 6.74E−01 3.9E−02 1.00E+00 2.9E−06 4.98E−01 5.8E−02 4.45E−01 4.7E−02
DTLZ6 6.2543E−01 7.3467E−02 9.83E−01 1.7E−01 1.00E+00 2.6E−08 5.35E−01 3.9E−02 6.77E−01 4.4E−02
DTLZ7 5.7549E−01 6.3992E−02 8.26E−01 1.1E−01 9.90E−01 2.4E−02 7.19E−01 3.8E−02 7.86E−01 4.7E−02
LZ09_F1 5.4704E−01 4.7112E−02 7.66E−01 5.1E−02 3.13E−01 4.2E−02 4.13E−01 7.5E−02 3.90E−01 1.2E−01
LZ09_F2 1.4560E+00 7.7391E−02 1.47E+00 1.3E−01 9.92E−01 1.4E−01 1.51E+00 1.2E−01 1.15E+00 1.2E−01
LZ09_F3 5.9809E−01 2.5325E−02 1.12E+00 1.0E−01 7.01E−01 8.8E−02 8.11E−01 1.0E−01 5.95E−01 7.0E−02
LZ09_F4 6.6043E−01 1.1133E−01 1.03E+00 4.8E−02 9.71E−01 1.7E−01 6.18E−01 7.9E−02 5.57E−01 7.1E−02
LZ09_F5 5.5921E−01 1.8684E−02 1.09E+00 7.7E−02 6.64E−01 8.7E−02 6.89E−01 7.4E−02 5.53E−01 5.5E−02
LZ09_F6 8.5872E−01 4.2198E−02 1.66E+00 4.1E−01 9.87E−01 2.8E−02 8.70E−01 7.8E−02 9.26E−01 1.0E−01
LZ09_F7 1.4757E+00 1.0291E−01 1.12E+00 1.5E−01 1.18E+00 1.8E−01 1.29E+00 1.7E−01 1.29E+00 2.2E−01
LZ09_F8 1.5498E+00 1.4076E−01 1.18E+00 1.6E−01 1.27E+00 7.4E−02 1.19E+00 1.6E−01 1.25E+00 2.9E−01
LZ09_F9 1.7528E+00 9.9970E−02 1.67E+00 1.2E−01 9.77E−01 1.3E−01 1.66E+00 1.9E−01 1.31E+00 2.0E−01
OKA1 9.1705E−01 5.1704E−02 1.63E+00 8.8E−02 1.17E+00 8.1E−02 1.03E+00 5.7E−02 1.33E+00 9.8E−02
OKA2 1.2893E+00 1.5059E−01 1.45E+00 3.3E−01 1.52E+00 3.1E−01 1.44E+00 8.7E−02 1.55E+00 1.2E−01
VN2 5.5021E−01 5.3611E−02 9.80E−01 5.6E−02 1.00E+00 7.3E−04 8.55E−01 9.8E−02 8.71E−01 8.2E−02
VN3 4.8448E−01 6.3981E−02 8.09E−01 7.4E−02 1.00E+00 3.0E−05 7.33E−01 4.5E−02 7.00E−01 6.0E−02
POL 7.8359E−01 8.1745E−03 1.17E+00 4.3E−02 1.26E+00 4.7E−02 8.12E−01 2.1E−02 7.93E−01 1.8E−02
SCH1 3.5224E−01 2.1944E−02 6.53E−01 2.2E−01 1.15E+00 3.4E−02 7.39E−01 3.5E−02 6.43E−01 2.8E−01
FON2 3.8055E−01 2.7448E−02 4.06E−01 2.5E−02 1.46E−01 5.7E−04 4.10E−01 3.6E−02 2.89E−01 2.2E−02
KUR 5.7412E−01 2.2797E−02 8.66E−01 2.9E−02 7.31E−01 4.2E−03 5.65E−01 2.5E−02 4.98E−01 1.9E−02
loss of generality, the global iteration ratio (GIR) is set to 1,
.3, and 0, respectively. When the global iteration ratio equals
, MOSGA only executes the global phase without considering
he local phase. Optimization is dedicated to the exploration of
he search space to find promising regions. This leads to the
iversification of non-dominated solutions, as demonstrated by
he low value of the SP and ∆ metrics. When the global iteration
ratio equals 0, MOSGA ignores the global phase and executes only
the local phase. Optimization is dedicated to the exploitation of
the best solutions found. This allows for improved convergence of
solutions; however, MOSGA is easily trapped in the local Pareto
optimum for complex problems. From Table 23, a global iteration
ratio of 0.3 could be defined as a proper value, which works well
for IGD, SP, ∆, and HV metrics. Therefore, the implementation of
both phases at a reasonable ratio in MOSGA is essential to balance
between exploitation and exploration.

4.5. Discussion

The MOSGA performance is studied on 25 different bench-
mark functions and five multi-objective engineering problems.
MOSGA is compared with NSGA-II, MOMVO, MOMVO, MODA,
and MOGOA for GD, IGD, SP, ∆, and HV indicators. Moreover,
MOSGA is also compared with other recent methods in previ-
ous studies on a different set of 36 benchmark functions and
some constrained test functions using IGD, ∆, and HV metrics.
In this study, GD and IGD are used to assess the convergence and
accuracy of the algorithm, while SP and ∆ metrics are used to
measure the distribution and spread of obtained solutions. Of all
20
five performance measures, HV is a robust metric for assessing
both the convergence and diversity ability of a MOO method.
The obtained results of MOSGA are presented based on different
statistical analyses, non-parametric statistical tests, robustness
analysis, and graphical representations of Pareto optimal fronts.
The statistical results of performance criteria reveal that the
MOSGA is able to offer a superior quality of solutions in compari-
son to other methods. For all test functions, Pareto fronts yielded
by MOSGA magnificently converge on true Pareto fronts with
high diversity. Based on results of non-parametric statistical tests
using Friedman rank test and Wilcoxon rank-sum test, MOSGA
outperforms NSGA-II, MOMVO, MOMVO, MODA, and MOGOA for
majority of performance metrics. In summary, the comparative
results show that the MOSGA provides high convergence and
diversity in comparison to other MOO algorithms.

Superior convergence is originated from MOSGA search mech-
anisms. Firstly, MOSGA benefits from high exploration. MOSGA
search engine is based on a search group, allowing MOSGA to
consider a set of best solutions obtained so far (i.e., family leaders)
and oblige other solutions to update their positions based on
these family leaders. This mechanism helps MOSGA to explore the
search space more extensively and find more promising regions.
Moreover, MOSGA performs mutation process to explore newer
areas of the search domain in each iteration. MOSGA improves
its exploration ability and local minima avoidance. The high ex-
ploitation capability of MOSGA is another reason for high con-
vergence. Convergence is improved in MOSGA over the iterations
since the perturbation coefficient (αk) is adaptively decreased to
turn the optimization process from exploration to exploitation.
This allows MOSGA to search locally and exploit promising areas
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Table 13
Comparative results of MOSGA and previous studies in terms of HV metric for ZDT, WFG, DTLZ, LZ09 test suites, OKA1, OKA2, VN2, VN3, POL, SCH1, FON2, and KUR
Test functions MOSGA IBEA [56] MOEA/D [56] MOVS [57] MOAAA [58]

Average SD Average SD Average SD Average SD Average SD

ZDT1 7.1811E−01 1.8710E−04 6.62E−01 9.0E−05 6.40E−01 7.6E−03 6.60E−01 2.2E−04 6.58E−01 3.4E−04
ZDT2 4.4229E−01 2.7843E−04 3.27E−01 1.4E−04 3.10E−01 6.8E−03 3.26E−01 3.32-04 3.25E−01 4.6E−04
ZDT3 6.5822E−01 1.3506E−04 5.09E−01 6.2E−03 4.43E−01 2.5E−02 5.15E−01 2.6E−04 5.15E−01 1.5E−04
ZDT4 7.1880E−01 3.4918E−04 2.36E−01 9.3E−02 3.01E−01 1.8E−01 1.10E−01 1.5E−01 5.57E−01 1.2E−01
ZDT6 5.0470E−01 1.1665E−04 3.96E−01 5.5E−04 4.01E−01 9.4E−04 3.99E−01 4.2E−04 3.98E−01 3.1E−04
WFG1 6.6106E−01 1.2900E−02 4.73E−01 1.1E−01 3.22E−01 8.7E−02 4.90E−01 5.7E−02 6.20E−01 1.6E−02
WFG2 6.3357E−01 8.4746E−05 5.50E−01 8.3E−04 5.55E−01 3.4E−04 5.57E−01 1.3E−04 5.57E−01 1.1E−04
WFG3 5.7948E−01 2.8025E−04 4.94E−01 3.7E−04 4.93E−01 1.3E−04 4.93E−01 3.5E−04 4.92E−01 3.5E−04
WFG4 3.4502E−01 3.9828E−04 2.09E−01 1.8E−04 2.04E−01 1.8E−03 2.10E−01 2.1E−04 2.09E−01 2.5E−04
WFG5 3.1268E−01 1.9629E−04 2.17E−01 8.0E−04 2.18E−01 4.7E−05 2.20E−01 4.0E−03 2.18E−01 2.5E−03
WFG6 3.1817E−01 2.1664E−02 1.97E−01 1.1E−02 2.09E−01 1.5E−04 2.07E−01 2.1E−03 2.08E−01 1.2E−03
WFG7 3.4431E−01 4.1369E−04 2.08E−01 1.8E−04 2.09E−01 8.4E−05 2.09E−01 2.1E−04 2.09E−01 3.4E−04
WFG9 3.2135E−01 4.3452E−02 2.24E−01 1.3E−03 2.22E−01 6.9E−04 2.23E−01 1.0E−03 2.24E−01 1.0E−03
DTLZ1 7.5276E−01 2.1590E−01 1.74E−01 8.1E−02 2.01E−01 1.4E−01 6.37E−01 1.6E−01 4.22E−01 3.4E−01
DTLZ2 5.3435E−01 3.3522E−03 4.12E−01 6.0E−04 7.55E−02 3.1E−06 3.75E−01 3.5E−03 3.71E−01 5.4E−03
DTLZ4 5.3527E−01 3.7028E−03 2.42E−01 1.3E−01 8.15E−02 2.7E−02 3.82E−01 4.3E−03 3.71E−01 5.3E−03
DTLZ5 1.9900E−01 1.1852E−04 9.17E−02 1.8E−04 1.43E−02 1.6E−07 9.28E−02 2.1E−04 9.28E−02 2.1E−04
DTLZ6 1.9950E−01 1.4479E−04 7.22E−02 1.4E−02 1.45E−02 3.8E−09 9.408-02 1.6E−04 9.36E−02 1.8E−04
DTLZ7 3.9943E−01 3.6629E−03 2.34E−01 4.6E−02 6.38E−02 4.9E−02 2.70E−01 5.1E−03 2.86E−01 3.5E−03
LZ09_F1 6.9678E−01 2.6201E−03 6.55E−01 1.4E−03 6.61E−01 1.1E−04 6.50E−01 1.1E−03 6.51E−01 7.1E−04
LZ09_F2 6.1353E−01 8.4377E−03 4.93E−01 4.4E−02 5.27E−01 3.8E−02 5.27E−01 1.5E−02 5.59E−01 2.3E−02
LZ09_F3 6.6161E−01 8.1761E−03 5.85E−01 1.7E−02 5.96E−01 2.7E−02 5.78E−01 6.4E−03 5.97E−01 7.6E−03
LZ09_F4 6.5713E−01 9.3259E−03 6.02E−01 5.9E−03 6.20E−01 5.2E−03 5.93E−01 4.5E−03 6.05E−01 6.1E−03
LZ09_F5 6.7478E−01 4.1113E−03 6.03E−01 1.2E−02 6.09E−01 1.7E−02 5.97E−01 3.8E−03 6.12E−01 5.2E−03
LZ09_F6 3.6755E−01 4.8070E−02 6.43E−02 7.5E−02 7.26E−02 1.2E−02 2.27E−01 3.0E−02 1.90E−01 3.4E−02
LZ09_F7 4.4411E−01 3.7451E−02 3.93E−01 6.1E−02 4.43E−01 1.5E−01 3.78E−01 6.0E−02 3.19E−01 1.4E−01
LZ09_F8 4.0389E−01 5.7868E−02 3.85E−01 5.5E−02 3.50E−01 9.6E−02 3.32E−01 4.5E−02 2.72E−01 1.1E−01
LZ09_F9 3.3760E−01 5.1140E−03 1.63E−01 4.9E−02 1.67E−01 6.4E−02 2.05E−01 1.4E−02 2.26E−01 2.4E−02
OKA1 6.7246E−01 9.6989E−03 5.67E−01 1.5E−02 6.00E−01 7.6E−03 6.04E−01 6.5E−03 5.56E−01 9.5E−03
OKA2 2.8171E−01 2.2090E−02 6.29E−02 5.0E−02 5.25E−02 3.5E−02 1.23E−01 2.9E−02 5.77E−02 1.2E−02
VN2 9.3304E−01 1.1161E−03 9.07E−01 7.4E−03 7.25E−01 4.2E−04 9.20E−01 1.1E−03 9.21E−01 1.1E−03
VN3 8.6117E−01 5.7938E−04 8.29E−01 4.4E−03 5.66E−01 5.7E−05 8.32E−01 6.2E−04 8.33E−01 5.9E−04
POL 9.2797E−01 5.6186E−05 9.11E−01 1.3E−03 9.11E−01 1.3E−03 9.13E−01 1.1E−04 9.13E−01 6.9E−05
SCH1 8.5878E−01 1.4293E−04 5.30E−01 2.1E−01 5.03E−01 1.9E−01 8.27E−01 3.4E−04 4.70E−01 2.2E−01
FON2 4.2956E−01 2.3297E−04 3.11E−01 1.1E−04 3.12E−01 1.2E−05 3.08E−01 4.1E−04 3.09E−01 3.6E−04
KUR 5.0044E−01 3.9042E−04 3.94E−01 9.2E−04 4.00E−01 1.1E−04 4.00E−01 2.4E−04 4.00E−01 2.0E−04
in the search space. Since best obtained non-dominated solu-
tions are stored in the Pareto archive, choosing a new search
group from the Pareto archive emphasizes the exploitation of
the best regions in the local phase. High exploitation also leads
to high convergence. Thanks to the perturbation coefficient and
proposed schemes in global and local phases, MOSGA has the
advantage of striking a satisfactory balance between exploitation
and exploration capabilities.

Another advantage is the high diversity (distribution and
pread) of the MOSGA due to new search group selection and
areto archive update mechanisms. MOSGA uses tournament
election to provide a high probability of choosing new family
eaders from less crowded regions of the obtained non-dominated
ront. This promotes the search group to exploit and explore the
ess crowded regions of the search space and front. Moreover, a
election mechanism is used to discard non-dominated solutions
rom the most crowded regions when the Pareto archive is
ull. Hence, MOSGA boosts the diversity of solutions during the
ptimization process.
Although the proposed MOSGA obtains remarkable results for

ll benchmark test functions and real engineering problems, it
lso has a certain limitation. Since MOSGA is developed as a
areto dominance-based algorithm, it can effectively solve MOPs
ith two and three conflict objective functions and obtain sat-

sfactory results. However, when dealing with MOPs with more
han three objective functions, a large number of non-dominated
olutions are obtained at each iteration and the archive becomes
ull quickly. This results in the performance of the MOSGA pos-
ibly being less efficient when solving such problems. Hence,
21
MOSGA is suitable for MOPs with two and three objective func-
tions.

5. Conclusion

This paper has proposed the first multi-objective version of the
SGA called MOSGA. SGA mechanisms are modified by integrating
two new modules to develop the MOSGA. Initially, the elitist
non-dominated sorting approach is applied to help determine
non-dominated solutions via three significant stages: mutation,
offspring generation, and selection. The Pareto archive selection
mechanism is the second module to maintain and enhance the
convergence and diversity of non-dominated solutions during
optimization. The effectiveness of the MOSGA is demonstrated
by solving twenty-five unconstrained and constrained benchmark
problems. The performance metrics are used for comparison in-
cluded IGD, SP, ∆, and HV metrics. The statistical results prove
that MOSGA provides a superior quality of solutions compared to
five well-regarded algorithms considered in this study. MOSGA
outperforms the other algorithms for all the test problems based
on the convergence (IGD metric). Besides, MOSGA also surpasses
the other algorithms for most problems based on diversity (SP
and ∆ metrics). For the HV metric, MOSGA also has the best
performance. All Pareto optimal fronts yielded by MOSGA are
well-converged on true Pareto optimal fronts with high diver-
sity. Moreover, the study further tests MOSGA with five real
engineering problems to verify its applicability. For all applica-
tions, MOSGA obtains superior solution quality compared to other
algorithms. High convergence and diversity of obtained Pareto
optimal fronts are due to the high exploitation and exploration
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Table 14
Comparative results of MOSGA and previous studies in terms of GD, SP, and ∆ metrics for test functions BINH2, CONSTR, KITA, SRN, and TNK.
Algorithms GD SP ∆ Times

Average SD Average SD Average SD

BINH2
MOSGA 1.1339E−04 1.5103E−05 7.9900E−03 4.3079E−04 3.9372E−01 2.5165E−02 2.217
MOCBO [21] 1.498E−01 7.60E−03 – – 4.798E−01 7.210E−02 9.1544
MOSOS [21] 1.436E−01 6.24E−03 – – 4.288E−01 6.250E−02 16.2664
NS-GWO [63] 1.6689E−01 5.97E−03 – – 4.879E−01 8.965E−02 8.5685

CONSTR
MOSGA 2.1479E−04 2.2059E−05 7.2431E−03 6.0451E−04 3.9081E−01 2.2611E−02 2.335
MOWCA [15] 8.7102E−04 5.7486E−05 3.5E−02 1.0E−03 1.745E−01 2.0441E−02 –
CMOPSO [15] 2.9894E−03 8.3111E−03 – – 5.7586E−01 2.2894E−02 –
MOCBO [21] 5.202E−01 3.42E−03 – – 7.235E−01 8.32E−03 5.2252
MOSOS [21] 5.162E−01 2.14E−03 – – 7.122E−01 7.21E−03 10.011
SPEA2 [55] 4.8247E−03 3.7650E−04 – – 4.280E−01 1.2258E−02 –
MOSADE [55] 4.8101E−03 3.7427E−04 – – 3.546E−01 5.8029E−02 –
NS-GWO [63] 4.8955E−01 1.802E−02 – – 6.598E−01 5.69E−04 12.895

KITA
MOSGA 5.1505E−04 1.8588E−04 6.1059E−03 9.3840E−04 3.1062E−01 2.1173E−02 2.152
Micro-GA [15] 1.507E−01 8.97E−02 3.150E−01 4.217E−01 – – –
PAES [15] 1.931E−01 3.32E−02 1.101E−01 9.95E−02 – – –
MOCS [15] 2.74E−02 3.24E−02 1.592E−01 2.338E−01 1.0169E+00 1.147E−01 –
MOWCA [15] 4.9E−03 4.5E−03 4.85E−02 4.78E−02 3.764E−01 7.44E−02 –
MOALO [18] 4.20E−02 4.9E−02 2.9E−01 4.2E−01 6.0E−01 1.9E−01 –
MOCBO [21] 3.84E−02 9.20E−03 – – 7.734E−01 8.324E−02 10.324
MOSOS [21] 3.68E−02 8.30E−03 – – 6.832E−01 7.242E−02 14.382

SRN
MOSGA 1.3779E−04 1.5733E−05 6.3641E−03 6.2374E−04 3.8862E−01 3.4467E−02 2.253
CMOPSO [15] 2.5331E−02 5.2561E−03 – – 1.965E−01 2.4527E−02 –
MOWCA [15] 2.5836E−02 5.0102E−03 4.164E−01 7.79E−02 1.477E−01 1.3432E−02 –
MOCBO [21] 1.018E−01 1.56E−03 – – 2.352E−01 1.93E−03 7.3251
MOSOS [21] 9.88E−02 1.47E−03 – – 2.295E−01 1.76E−03 12.325
SPEA2 [55] 2.1059E−03 4.7502E−04 – – 1.0134E−01 1.9082E−02 –
MOSADE [55] 2.0028E−03 2.0227E−04 – – 1.0525E−01 9.3834E−03 –
NS-GWO [63] 6.987E−02 1.785E−02 – – 2.001E−01 6.5E−04 7.2440

TNK
MOSGA 4.2795E−04 6.3456E−05 4.7533E−03 5.8748E−04 7.1382E−01 3.2403E−02 2.498
MOWCA [15] 1.3067E−03 6.1979E−05 – – 6.0211E−01 2.8148E−02 –
CMOPSO [15] 5.4811E−04 7.9634E−05 – – 2.5871E−01 2.7272E−02 –
MOALO [18] 7.97E−04 5.4E−05 2.0E−03 1.0E−04 6.4E−01 1.2E−02 –
MOCBO [21] 1.528E−01 5.12E−03 – – 1.242E−01 5.124E−02 11.010
MOSOS [21] 1.508E−01 4.04E−03 – – 1.206E−01 4.236E−02 15.128
SPEA2 [55] 3.8175E−03 4.9142E−04 – – 7.8373E−01 2.9969E−02 –
MOSADE [55] 3.7393E−03 3.7907E−04 – – 7.5265E−01 2.9918E−02 –
NS-GWO [63] 1.4785E−01 3.35E−03 – – 9.955E−02 2.568E−02 9.1156
Table 15
Results of MOO algorithms in terms of SP and HV metrics for four-bar truss design problem.
Algorithms SP HV Times

Average SD Average SD

MOSGA 8.6497E−03 4.2535E−04 7.6022E−01 2.9020E−04 0.9979
NSGA-II 2.2800E−02 3.1187E−02 7.5480E−01 2.4722E−03 2.5323
MOPSO 1.3103E−02 1.3089E−02 7.4815E−01 1.1422E−02 2.7469
MOMVO 1.4534E−02 2.1363E−03 7.5146E−01 1.9507E−03 1.3807
MODA 4.4022E−02 4.3926E−02 7.4247E−01 6.5398E−03 11.7750
MOGOA 1.8177E−02 9.8555E−03 7.3807E−01 1.3624E−02 13.5750
Table 16
Results of MOO algorithms in terms of SP and HV metrics for speed reducer design problem.
Algorithms SP HV Times

Average SD Average SD

MOSGA 7.3202E−03 3.8366E−03 9.6963E−01 3.7058E−03 0.9583
NSGA-II 1.5198E−02 3.9273E−03 9.5687E−01 4.4127E−03 17.7969
MOPSO 1.3004E−02 8.5665E−03 9.6881E−01 4.2488E−03 2.1125
MOMVO 1.7613E−02 6.4886E−03 9.5951E−01 4.4804E−03 0.8234
MODA 3.2642E−02 2.2231E−02 8.8848E−01 1.9508E−02 16.2354
MOGOA 8.8099E−03 2.5960E−03 9.4094E−01 3.7759E−02 24.1703
22
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Table 17
Results of MOO algorithms in terms of SP and HV metrics for disk brake design problem.
Algorithms SP HV Times

Average SD Average SD

MOSGA 7.3538E−03 6.7964E−04 8.9578E−01 8.2402E−04 0.8943
NSGA-II 3.0740E−02 4.4559E−02 8.9190E−01 1.2560E−03 4.2214
MOPSO 1.8261E−02 1.2020E−02 8.8750E−01 2.4272E−03 3.2125
MOMVO 3.8599E−02 6.4632E−02 8.8622E−01 2.1166E−03 1.2214
MODA 3.1079E−02 2.1984E−02 8.7068E−01 6.7012E−03 10.2063
MOGOA 1.2720E−02 3.3030E−03 8.8217E−01 4.9237E−03 12.5995
Table 18
Results of MOO algorithms in terms of SP and HV metrics for welded beam design problem.
Algorithms SP HV Times

Average SD Average SD

MOSGA 7.0178E−03 6.5459E−04 9.2794E−01 2.0136E−03 0.9510
NSGA-II 2.9740E−02 2.5266E−02 9.1330E−01 6.5717E−03 4.7370
MOPSO 1.5732E−02 1.4279E−02 9.1556E−01 8.3464E−03 3.2474
MOMVO 1.4265E−02 5.7283E−03 9.1697E−01 5.7954E−03 1.2250
MODA 2.3166E−02 1.4875E−02 9.0618E−01 1.2988E−02 10.2797
MOGOA 5.6490E−02 8.5288E−02 8.7955E−01 5.3347E−02 13.8604
Table 19
Results of MOO algorithms in terms of SP and HV metrics for spring design problem.
Algorithms SP HV Times

Average SD Average SD

MOSGA 1.1955E−02 7.2016E−03 7.9475E−01 5.0796E−03 0.9802
NSGA-II 1.2663E−02 8.3666E−03 7.6466E−01 1.2696E−02 15.5917
MOPSO 1.7378E−02 1.6009E−02 7.9050E−01 8.8883E−03 1.3380
MOMVO 1.9543E−02 1.1880E−02 7.8495E−01 2.1550E−02 0.6870
MODA 1.3744E−01 1.0520E−01 6.4578E−01 7.7132E−02 7.0547
MOGOA 8.0208E−02 4.8762E−02 7.3452E−01 3.5101E−02 12.9464
Table 20
The average ranking of MOO algorithms by Friedman test for multi-objective
engineering problems.
Algorithms SP HV

MOSGA 1.7200 1.2333
NSGA-II 3.3200 3.2533
MOPSO 3.0200 2.8000
MOMVO 3.9067 3.2800
MODA 5.1667 5.4667
MOGOA 3.8667 4.9667

capabilities of the MOSGA. The analysis of the results underscores
the ability of the MOSGA is capable of solving problems with two
and three objectives with convex, non-convex, and discontinuous
Pareto optimal fronts. It is encouraged to develop and apply
MOSGA to different real-world engineering problems for future
works. Moreover, MOSGA should be extended and improved to
solve many-objective problems.
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Appendix A. Multi-objective benchmark test problems

Tables A.1–A.3 presents the mathematical formulations of
multi-objective benchmark test problems.

Appendix B. Boxplot analysis of performance metrics

Figs. B.1–B.4 present the boxplot analysis of IGD, SP, ∆, and HV
obtained by all algorithms for twenty-five benchmark functions.

Appendix C. Pareto optimal front of benchmark test functions

Figs. C.1 and C.2 present Pareto fronts obtained by MOSGA for
WFG and DTLZ test suites.

Appendix D. Multi-objective engineering design problems

Four-Bar Truss Design Problem
The target of this classical engineering problem is to optimize

the structural weight and joint displacement of a truss with four
bars simultaneously. The cross-sectional areas of the structural
members (1, 2, 3, and 4) are determined as four continuous
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Table 21
Effects of perturbation constant (αk) on the IGD, SP, ∆, and HV metrics for test functions BINH1 and BINH2.
Parameters IGD SP ∆ HV Times

Average SD Average SD Average SD Average SD

BINH1

αk
= 1 2.6256E−04 8.7493E−06 8.5644E−03 6.1561E−04 4.6536E−01 2.9696E−02 8.5825E−01 2.1762E−04 0.817

αk
= 2 2.5735E−04 1.1635E−05 7.7850E−03 5.4317E−04 4.2317E−01 3.2684E−02 8.5854E−01 1.9897E−04 0.829

αk
= 3 2.5152E−04 1.3499E−05 7.4010E−03 5.9414E−04 3.9194E−01 3.3539E−02 8.5862E−01 1.9522E−04 0.662

αk
= 4 2.5196E−04 1.4202E−05 7.9424E−03 6.3199E−04 4.1031E−01 3.7957E−02 8.5853E−01 1.9321E−04 0.547

αk
= 5 2.5190E−04 8.6468E−06 7.9540E−03 3.9971E−04 4.1244E−01 2.7087E−02 8.5854E−01 2.1388E−04 0.506

BINH2

αk
= 1 7.6065E−05 1.4936E−05 9.4292E−03 4.0176E−04 5.5961E−01 3.2936E−02 8.4240E−01 2.0682E−04 1.127

αk
= 2 7.1019E−05 2.9504E−06 9.2464E−03 4.6750E−04 5.1121E−01 2.8786E−02 8.4254E−01 2.0770E−04 0.696

αk
= 3 7.0076E−05 5.7899E−06 8.3983E−03 6.8836E−04 4.3699E−01 3.2655E−02 8.4313E−01 1.3995E−04 0.989

αk
= 4 7.1042E−05 2.5249E−06 8.9313E−03 5.3394E−04 4.9476E−01 3.1094E−02 8.4265E−01 1.9215E−04 0.888

αk
= 5 7.2148E−05 2.4649E−06 9.2776E−03 5.0865E−04 5.2670E−01 3.1048E−02 8.4251E−01 2.0682E−04 1.243
Table 22
Effects of the number of search group members (ng ) on the IGD, SP, ∆, and HV metrics for test functions BINH1 and BINH2.

Parameters IGD SP ∆ HV Times

Average SD Average SD Average SD Average SD

BINH1
ng = 10 2.5512E−04 1.2190E−05 6.1138E−03 4.9706E−04 3.7299E−01 1.6388E−02 8.5853E−01 2.0486E−04 0.838
ng = 15 2.5358E−04 2.1957E−05 6.5989E−03 5.8846E−04 3.7387E−01 2.9428E−02 8.5863E−01 2.1053E−04 0.598
ng = 20 2.5152E−04 1.3499E−05 7.4010E−03 5.9414E−04 3.9194E−01 3.3539E−02 8.5862E−01 1.9522E−04 0.662
ng = 25 2.5776E−04 1.4516E−05 7.6622E−03 6.0086E−04 4.1991E−01 3.0587E−02 8.5860E−01 2.1500E−04 0.515
ng = 30 2.6178E−04 9.6556E−06 8.1284E−03 6.1160E−04 4.4374E−01 2.9288E−02 8.5852E−01 1.8325E−04 0.593

BINH2
ng = 10 7.1953E−05 4.5675E−06 7.0788E−03 7.2036E−04 4.1058E−01 2.5059E−02 8.4272E−01 2.6710E−04 0.845
ng = 15 7.1257E−05 3.2004E−06 7.7936E−03 3.7331E−04 4.2879E−01 2.5133E−02 8.4283E−01 2.3919E−04 0.947
ng = 20 7.0076E−05 5.7899E−06 8.3983E−03 6.8836E−04 4.3699E−01 3.2655E−02 8.4313E−01 1.3995E−04 0.989
ng = 25 6.9576E−05 3.9754E−06 8.5857E−03 6.0789E−04 4.6150E−01 3.3187E−02 8.4275E−01 2.8642E−04 0.893
ng = 30 6.8571E−05 1.9359E−06 8.9575E−03 5.6170E−04 4.8835E−01 3.1339E−02 8.4265E−01 1.9750E−04 0.905
Table 23
Effects of the global iteration ratio (GIR) on the IGD, SP, ∆, and HV metrics for test functions BINH1 and BINH2.
Parameters IGD SP ∆ HV Times

Average SD Average SD Average SD Average SD

BINH1
GIR = 1 2.5969E−04 2.6335E−05 6.4980E−03 9.6961E−04 3.5687E−01 3.8197E−02 8.5833E−01 2.6648E−04 1.309
GIR = 0.3 2.5152E−04 1.3499E−05 7.4010E−03 5.9414E−04 3.9194E−01 3.3539E−02 8.5862E−01 1.9522E−04 0.662
GIR = 0 2.5173E−04 8.6047E−06 7.7312E−03 5.5441E−04 4.1236E−01 2.5284E−02 8.5858E−01 1.4081E−04 0.484
BINH2
GIR = 1 7.4687E−05 7.9149E−06 7.1561E−03 6.3944E−04 3.9546E−01 2.7269E−02 8.4248E−01 4.5496E−04 1.468
GIR = 0.3 7.0076E−05 5.7899E−06 8.3983E−03 6.8836E−04 4.3699E−01 3.2655E−02 8.4313E−01 1.3995E−04 0.989
GIR = 0 6.8981E−05 5.5783E−06 8.5827E−03 5.5625E−04 4.5101E−01 3.2407E−02 8.4279E−01 2.8576E−04 0.776
design variables. The problem is mathematically described below
[64,65]:

Minimize :

⎧⎪⎪⎨⎪⎪⎩
f1(x) = L(2x1 +

√
2x2 +

√
x3 + x4)

f2 (x) =
FL
E

(
2
x2

+
2
√
2

x2
−

2
√
2

x3
+

2
x4

)
(D.1)

ariable range :

(
F
σ

)
≤ x1 ≤ 3 ×

(
F
σ

)
(D.2)

√
2 ×

(
F
σ

)
≤ x2 ≤ 3 ×

(
F
σ

)
(D.3)

√
2 ×

(
F
σ

)
≤ x3 ≤ 3 ×

(
F
σ

)
(D.4)(

F
σ

)
≤ x4 ≤ 3 ×

(
F
σ

)
(D.5)

where : F = 10 kN, E = 2 × 105 kN/cm2 (D.6)
24
L = 200 cm, σ = 10 kN/cm3 (D.7)

Speed Reducer Design Problem

This problem was extensively studied in the field of me-
chanical optimization. The weight of the gear assembly and the
transverse deflection of the shaft are minimized simultaneously.
This problem includes seven design variables as well as eleven
constraints, which is formulated as follows [66]:

Minimize :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = 0.7854x1x22(3.3333x
2
3

+14.9334x3 − 43.0934)

−1.508x1(x26 + x27) + 7.4777(x36 + x37)

+0.7854(x4x26 + x5x27)

f2(x) =

√
(745x4/x2x3)2 + 1.69 × 107

3

(D.8)
0.1x6
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Table A.1
Definitions for test functions ZDT1, ZDT2, ZDT3, ZDT6, BINH1, DEB1, DEB2, DEB3, FON1, and FON2.
Problem Definition Constraints

ZDT1

f1(x) = x1

f2(x) = g(x)

[
1 −

√
f1

g(x)

]

g(x) = 1 +
9

n − 1

n∑
i=2

xi

n = 30

0 ≤ xi ≤ 1

i = 1, 2, . . . , 30

ZDT2

f1(x) = x1

f2(x) = g(x)

[
1 −

(
f1

g(x)

)2
]

g(x) = 1 +
9

n − 1

n∑
i=2

xi

n = 30

0 ≤ xi ≤ 1

i = 1, 2, . . . , 30

ZDT3

f1(x) = x1

f2(x) = g(x)

[
1 −

√
f1

g(x)
−

f1
g(x)

sin(10π f1)

]

g(x) = 1 +
9

n − 1

n∑
i=2

xi

n = 30

0 ≤ xi ≤ 1

i = 1, 2, . . . , 30

ZDT6

f1(x) = 1 − exp(−4x1) sin6(6πx1)

f2(x) = g(x)

[
1 −

(
f1

g(x)

)2
]

g(x) = 1 + 9
(∑n

i=2 xi
n − 1

)0.25

n = 10

0 ≤ xi ≤ 1

i = 1, 2, . . . , 10

BINH1
f1(x, y) = x2 + y2

f2(x, y) = (x − 5)2 + (y − 5)2
−5 ≤ x, y ≤ 10

DEB1

f1(x) = x1
f2(x) = g(x) · h(x)

g(x) = 1 + x22

h(x) =

⎧⎨⎩1 −

(
f1(x)
g(x)

)2

, if f1 ≤ g;

0, otherwise

0 ≤ xi ≤ 1

i = 1, 2

DEB2

f1(x) = x1

f2(x) = g(x) · h(x)

g(x) = 1 + 10x2

h(x) = 1 −

(
f1(x)
g(x)

)2

−
f1(x)
g(x)

sin(12π f1)

0 ≤ xi ≤ 1

i = 1, 2

DEB3

f1(x) = 1 − e(−4x1) sin4(10πx1)

f2(x) = g(x) · h(x)

g(x) = 1 + x22

h(x) =

⎧⎨⎩1 −

(
f1(x)
g(x)

)10

, if f1 ≤ g;

0, otherwise

0 ≤ xi ≤ 1

i = 1, 2

FON1
f1(x, y) = 1 − exp(−(x − 1)2 − (y + 1)2)

f2(x, y) = 1 − exp(−(x + 1)2 − (y − 1)2)
−4 ≤ x, y ≤ 4

FON2

f1(x) = 1 − exp

[
−

n∑
i=1

(
xi −

1
√
n

)2
]

f2(x) = 1 − exp

[
−

n∑
i=1

(
xi +

1
√
n

)2
]

n = 3

−4 ≤ xi ≤ 4

i = 1, 2, 3
Subject to : g1(x) =
27

x1x22x3
− 1 ≤ 0 (D.9)

g2(x) =
397.5
x1x22x

2
3

− 1 ≤ 0 (D.10)
25
g3(x) =
1.93x34
x2x3x46

− 1 ≤ 0 (D.11)

g4(x) =
1.93x35
x2x3x4

− 1 ≤ 0 (D.12)

7
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Table A.2
Mathematical formulations for test functions KUR, LAU, MUR, POL, SCH1, SCH2, VN1, VN2, and VN3.
Problem Definition Constraints

KUR

f1(x) =

n−1∑
i=1

[
−10 exp

(
−0.2

√
x2i + x2i+1

)]

f2(x) =

n∑
i=1

(
|xi|0.8 + 5 sin x3i

)
n = 3

−5 ≤ xi ≤ 5

i = 1, 2, 3

LAU
f1(x, y) = x2 + y2

f2(x, y) = (x + 2)2 + y2
−50 ≤ x, y ≤ 50

MUR
f1(x, y) = 2

√
x

f2(x, y) = x(1 − y) + 5

1 ≤ x ≤ 4

1 ≤ y ≤ 2

POL

f1(x, y) = 1 + (A1 − B1)2 + (A2 − B2)2

f2(x, y) = (x + 3)2 + (y + 1)2

A1 = 0.5 sin(1) − 2 cos(1) + sin(2) − 1.5 cos(2)

A2 = 1.5 sin(1) − cos(1) + 2 sin(2) − 0.5 cos(2)

B1 = 0.5 sin x − 2 cos x + sin y − 1.5 cos y

B2 = 1.5 sin x − cos x + 2 sin y − 0.5 cos y

−π ≤ x, y ≤ π

SCH1
f1(x) = x2

f2(x) = (x − 2)2
−1000 ≤ x ≤ 1000

SCH2
f1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−x, if x ≤ 1,

−2 + x, if 1 < x ≤ 3,

4 − x, if 3 < x ≤ 4,

−4 + x, if x > 4,

f2(x) = (x − 5)2

−5 ≤ x ≤ 10

VN1

f1(x, y) = x2 + (y − 1)2

f2(x, y) = x2 + (y + 1)2 + 1

f3(x, y) = (x − 1)2 + y2 + 2

−2 ≤ x, y ≤ 2

VN2

f1(x, y) =
(x − 2)2

2
+

(y + 1)2

13
+ 3

f2(x, y) =
(x + y − 3)2

36
+

(−x + y + 2)2

8
− 17

f3(x, y) =
(x + 2y − 1)2

175
+

(2y − x)2

17
− 13

−4 ≤ x, y ≤ 4

VN3

f1(x, y) = 0.5(x2 + y2) + sin(x2 + y2)

f2(x, y) =
(3x − 2y + 4)2

8
+

(x − y + 1)2

27
+ 15

f3(x, y) =
1

(x2 + y2 + 1)
− 1.1e(−x2−y2)

−3 ≤ x, y ≤ 3
g5(x) =
1

110x36

√(
745x4
x2x3

)2

+ 16.9 × 106 − 1 ≤ 0

(D.13)

g6(x) =
1

85x37

√(
745x5
x2x3

)2

+ 157.5 × 106 − 1 ≤ 0

(D.14)

g7(x) =
x2x3
40

− 1 ≤ 0 (D.15)

g8(x) =
5x2
x1

− 1 ≤ 0 (D.16)

g9(x) =
x1

12x2
− 1 ≤ 0 (D.17)
26
g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0 (D.18)

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0 (D.19)

Variable range : 2.6 ≤ x1 ≤ 3.6 (D.20)

0.7 ≤ x2 ≤ 0.8 (D.21)

17 ≤ x3 ≤ 28 (D.22)

7.3 ≤ x4, x5 ≤ 8.3 (D.23)

2.9 ≤ x6 ≤ 3.9 (D.24)

5 ≤ x7 ≤ 5.5 (D.25)
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Table A.3
Mathematical formulations for test functions BEL, BINH2, CONSTR, KITA, SRN, and TNK.
Problem Definition Constraints

BEL
f1(x, y) = −2x + y

f2(x, y) = 2x + y

0 ≤ x ≤ 5

0 ≤ y ≤ 3

−x + y − 1 ≤ 0

x + y − 7 ≤ 0

BINH2
f1(x, y) = 4x2 + 4y2

f2(x, y) = (x − 5)2 + (y − 5)2

0 ≤ x ≤ 5

0 ≤ y ≤ 3

(x − 5)2 + y2 − 25 ≤ 0

−(x − 8)2 − (y + 3)2 + 7.7 ≤ 0

CONSTR
f1(x, y) = x

f2(x, y) =
1 + y
x

0.1 ≤ x ≤ 1

0 ≤ y ≤ 5

−9x − y + 6 ≤ 0

−9x + y + 1 ≤ 0

KITA
max f1(x, y) = −x2 + y

max f2(x, y) =
1
2
x + y + 1

0 ≤ x, y ≤ 7
1
6
x + y −

13
2

≤ 0

1
2
x + y −

15
2

≤ 0

5x + y − 30 ≤ 0

SRN
f1(x, y) = (x − 2)2 + (y − 1)2 + 2

f2(x, y) = 9x − (y − 1)2

−20 ≤ x, y ≤ 20

x2 + y2 − 225 ≤ 0

x − 3y + 10 ≤ 0

TNK
f1(x, y) = x

f2(x, y) = y

0 ≤ x, y ≤ π

−x2 − y2 + 1 + 0.1 cos
[
16 arctan

(
x
y

)]
≤ 0(

x −
1
2

)2

+

(
y −

1
2

)2

−
1
2

≤ 0
w

Among these seven design variables, the third variable (x3) is a
discrete integer variable, and the remaining variables are contin-
uous.

Disk Brake Design Problem
This optimization problem was originally suggested by Ray

and Liew [67], in which the stopping time and the mass of a brake
are optimized based on five inequality constraints. The problem
is expressed in the following equations:

Minimize :

⎧⎪⎨⎪⎩
f1(x) = 4.9 × 10−5(x22 − x21)(x4 − 1)

f2(x) =
9.82 × 106(x22 − x21)

x3x4(x32 − x31)

(D.26)

ubject to : g1(x) = 20 + x1 − x2 ≤ 0 (D.27)

g2(x) = 2.5(x4 + 1) − 30 ≤ 0 (D.28)

g3(x) =
x3

3.14(x22 − x21)2
− 0.4 ≤ 0 (D.29)

g4(x) =
2.22 × 10−3x3(x32 − x31)

(x22 − x21)2
− 1 ≤ 0 (D.30)

g5(x) = 900 −
2.66 × 10−2x3x4(x32 − x31)

(x22 − x21)
≤ 0 (D.31)

ariable range :55 ≤ x1 ≤ 80 (D.32)

75 ≤ x ≤ 110 (D.33)
2

27
1000 ≤ x3 ≤ 3000 (D.34)

2 ≤ x4 ≤ 20 (D.35)

where x1, x2, x3, and x4 denote the inner radius of the disk, the
outer radius of the disk, the engaging force (actuating force), and
the number of friction surfaces, respectively. In particular, the
fourth variable (x4) is discrete.

Welded Beam Design Problem
This problem has four design variables with five imposed

constraints related to shear stress, bending stress, and buckling
load [68]. The fabrication cost and the end deflection of the beam,
are expected to be optimized. Hence, the mathematical formulas
of this problem are defined as follows [67]:

Minimize :

⎧⎪⎨⎪⎩
f1(x) = 1.10471x21x2 + 0.04811x3x4(14 + x2)

f2 (x) =
4PL3

Ex33x4

(D.36)

Subject to : g1(x) = τ (x) − τmax ≤ 0 (D.37)

g2(x) = σ (x) − σmax ≤ 0 (D.38)

g3(x) = x1 − x4 ≤ 0 (D.39)

g4(x) = P − Pc (x) ≤ 0 (D.40)

here : τ (x) =

√
(τ ′)2 + 2τ ′τ ′′

x2
+ (τ ′′)2 (D.41)
2R
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Fig. B.1. Statistical analysis of IGD metric for all test functions.
τ ′
=

P
√
2x1x2

, τ ′′
=

MR
J

, M = P
(
L +

x2
2

)
(D.42)

R =

√
x22
4

+

(
x1 + x3

2

)2

(D.43)

J = 2

{
√
2x1x2

[
x22
12

+

(
x1 + x3

2

)2
]}

(D.44)
28
σ (x) =
6PL
x4x23

, δ(x) =
4PL3

Ex4x33
(D.45)

Pc (x) =
4.013E

√
x23x

6
4

36

L2

(
1 −

x3
2L

√
E
4G

)
(D.46)

P = 6000 lb, L = 14 in, E = 30 × 106 psi,
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Fig. B.2. Statistical analysis of SP metric for all test functions.
w
G = 12 × 106 psi (D.47)

τmax = 13 600 psi, σmax = 30 000 psi,

δmax = 0.25 in (D.48)

ariable range :0.125 ≤ x1, x4 ≤ 5 (D.49)

0.1 ≤ x2, x3 ≤ 10 (D.50)
29
here x1, x2, x3, and x4 denote the thickness of the weld, the
length of the clamped bar, the height of the bar, and the thickness
of the bar, respectively.

Spring Design Problem
The target of this problem is to optimize the volume and stress

of spring. The design variables, in this case, involved the number
of spring coils (x1), wire diameter (x2), and spring diameter (x3).
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T

Fig. B.3. Statistical analysis of ∆ metric for all test functions.
his is a mixed-integer-discrete optimization problem since x1 is
an integer variable, whereas x2 is a discrete variable, and x3 is
a continuous variable. The constraints are imposed on minimum
deflection, shear stress, surge frequency, and limits on the exte-
rior diameter. The problem is formulated based on the following
formulas [68]:
30
Minimize :

⎧⎪⎨⎪⎩
f1(x) = 0.25π2x22x3(x1 + 2)

f2(x) =
8KPmaxx3

πx32

(D.51)

Subject to : g1(x) = 1.05x2(x1 + 2) +
Pmax

k
− lmax ≤ 0 (D.52)
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Fig. B.4. Statistical analysis of HV metric for all test functions.
w

g2(x) = dmin − x2 ≤ 0 (D.53)

g3(x) = x2 + x3 − Dmax ≤ 0 (D.54)

g4(x) = 3 − C ≤ 0 (D.55)

g5(x) = δp − δpm ≤ 0 (D.56)

g6(x) = δw −
Pmax − P

≤ 0 (D.57)

k

31
g7(x) =
8KPmaxx3

πx32
− S ≤ 0 (D.58)

g8(x) = [0.25π2x22x3(x1 + 2)] − Vmax ≤ 0 (D.59)

here : K =
4C − 1
4C − 4

+
0.615x2

x3
, P = 300 lb,

P = 1000 lb, L = 14 in (D.60)
max max
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Fig. C.1. Pareto optimal fronts generated by MOSGA for test functions WFG test suite.

Fig. C.2. Pareto optimal fronts generated by MOSGA for test functions DTLZ test suite.

32
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k

δ

δ

G

V

=
Gx42
8x1x33

, dmin = 0.2 in, Dmax = 3 in,

pm = 6 in, δw = 1.25 in (D.61)

p =
P
k
, C =

x3
x2

, S = 189,000 psi,

= 11,500,000 lb/in2, Vmax = 30 in3 (D.62)

ariable range : 1 ≤ x1 ≤ 32 (D.63)

x2 ∈ I (D.64)

1 ≤ x3 ≤ 30 (D.65)

where I = [0.009, 0.0095, 0.0104, 0.0118, 0.0128, 0.0132, 0.014,
0.015, 0.0162, 0.0173, 0.018, 0.020, 0.023, 0.025, 0.028, 0.032,
0.035, 0.041, 0.047, 0.054, 0.063, 0.072, 0.080, 0.092, 0.105, 0.120,
0.135, 0.148, 0.162, 0.177, 0.192, 0.207, 0.225, 0.244, 0.263, 0.283,
0.307, 0.331, 0.362, 0.394, 0.4375, 0.5].
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