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ABSTRACT This paper proposes a new multi-objective method that efficiently solves the multi-objective
optimal power flow (MOOPF) problem in power systems. The objective of solving theMOOPF problem is to
concurrently optimize the fuel cost, emissions, and active power loss. The proposed multi-objective search
group algorithm (MOSGA) is an effective method that combines the merits of the original search group
algorithm with fast nondominated sorting, crowding distance, and archive selection strategies to acquire a
nondominated set in a single run. The MOSGA is employed on IEEE 30-bus and 57-bus systems to validate
its robustness and efficiency. It was found that implementing MOSGA to solve the MOOPF significantly
enhanced the performance of power systems in terms of economic, environmental, and technical benefits.
As for Case 6, the fuel cost, emissions, and active power loss were reduced by 16.5707%, 52.0605%,
and 60.9443%, respectively. The simulation results were analyzed and compared with those of previously
reported studies based on the best individual solutions, compromise solutions, and performance indicators.
The comparative results confirmed the potential and advantage of MOSGA when solving the MOOPF
problem efficiently and MOSGA had high-quality optimal solutions.

INDEX TERMS Multi-objective search group algorithm, multi-objective optimal power flow, fuel cost,
emissions.

I. INTRODUCTION
Optimal power flow (OPF) is a critical optimization problem
in modern power systems [1]. The OPF problem seeks a
steady-state operation point of generators so that a specific
objective is optimized while satisfying various operational
constraints, such as the power flow balance, voltage, active
and reactive power outputs of the generators, shunt com-
pensators, transformer tap setting, voltage magnitude at load
bus, and transmission line loading [2]. OPF is generally a
nonconvex, nonlinear, mixed-integer, highly constrained, and
large-scale optimization problem [3], [4]. While the primary
objective of the traditional OPF solution is to minimize fuel
costs, utilities have commercial concerns, and it is necessary
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to reduce transmission losses to maintain a high level of
power quality. Moreover, growing environmental concerns
require the consideration of emission levels as an objective
function rather than a constraint [5]. Therefore, a multi-
objective OPF (MOOPF) was developed to address multiple
objective functions, namely the fuel cost, emissions, and
active power loss.

The MOOPF problem has been the subject of exten-
sive research over the past few years, and various meta-
heuristic algorithms have been successfully used to address
the MOOPF problem. The two most common approaches
are classical methods and multi-objective evolutionary
algorithms (MOEAs). Traditional methods transform a
multi-objective problem into a single-objective problem by
designating a suitable weighting factor for each objec-
tive. Some of the latest traditional methods include the
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backtracking search optimization algorithm (BSA) [1], black
hole (BH) [6], artificial bee colony (ABC) [7], improved
colliding bodies optimizer (ICBO) [8], enhanced ant colony
optimization (EACO) [9], moth-swarm algorithm (MSA)
[10], differential search algorithm (DSA) [11], differential
evolution (DE) [12], and improved moth-flame optimization
(IMFO) [13]. These approaches are easy to implement and
can use single-objective algorithms directly without modifi-
cation. However, they could only obtain an optimal solution
in one simulation run of the algorithm. Hence, these methods
cannot identify the trade-offs between multiple objectives.

In recent years, several novel and effective MOEAs have
been adopted to address theMOOPF problem. Thesemethods
aim to provide an accurate depiction of the Pareto optimal
front and offer a broader range of solutions for decision mak-
ers. An example is the modified shuffle frog leap algorithm
(MSFLA) [14], which has been proposed for a 30-bus system.
In [15], the teaching learning-based optimization (TLBO)
was integrated with a quasi-opposition approach to boost the
solution’s quality and convergence speed. The TLBOmethod
was applied to optimize the power losses, voltage stability
index, fuel cost, and emissions. In [16], the authors recom-
mended a modified TLBO (MTLBO) to handle the MOOPF
problem with emission and cost objectives. Bilel et al. [17]
studied the MOOPF problem for 33-bus and Algerian 59-bus
systems using a multiple objective imperialism competition
algorithm (MOICA). In [18], the OPF concept was applied
to bidirectional photovoltaics and batteries in the microgrid.
In [19], the authors modified a multiple objective multihive
bee algorithm (MHBA) by integrating an external archive
to solve the MOOPF problem. A comprehensive learning
method was used to determine the flight behavior of bees.
Greedy selection and crowding distance techniques were
used to maintain nondominated solutions in an archive.
Zhang et al. [20] introduced an MOEA-based decomposition
(MOEA/D) to handle the MOOPF. The fuel cost, voltage
deviations, power losses, and emissions were chosen for
seven scenarios on a 30-bus system. A modified decomposi-
tion algorithmwas integrated with a decision-making method
and a mixed constraint-handling technique. MOEA/D was
compared with other methods based on different performance
indicators and was shown to have excellent performance and
yield competitive solutions. A modified Gaussian bare-bones
imperialism competition algorithm (MGBICA) was devel-
oped in [21] to determine the optimal electric power planning
strategy. To overwhelmed the difficulty of tuning the control
parameters, the authors in [22] established an enhanced self-
adaptive DE and a mix crossover operator (ESDE-MC) to
handle single- and MOOPF problems. In [23], the improved
strength of Pareto evolutionary algorithm 2 (ISPEA2) was
assessed on 30- and 57-bus networks for the MOOPF prob-
lem. Warid et al. [24] provided a solution to the MOOPF
problem through a quasi-opposite modified Jaya (QOMJaya)
algorithm and validated it on a 30-bus network. The explo-
ration capability of the QOMJaya was improved by inte-
grating a quasioppositional approach. In [25], the MOOPF

problem was solved using a multiple objective dimension-
based firefly algorithm (MODFA), which was employed on
30- and 57-bus networks in nine case studies. In [26], a hybrid
DE was implemented along with a harmony search (HS) for
the MOOPF solution. In addition to the voltages and real
power of the generator buses, transformer tap settings and
reactive power compensators were included in the control
variables; 30-, 118-, and 300-bus networks were used to ver-
ify the usefulness of the proposed method. Zhang et al. [27]
enhanced the nondominated sorting genetic algorithm III
(NSGA-III) to minimize numerous OPF objectives, namely
emissions, fuel costs, voltage magnitude deviations, line
indexes, and active power losses. In [28], the authors sug-
gested a combination of particle swarm optimization (PSO)
and salp swarm optimizer (SSO) methods to solve the
MOOPF issue. Biswas et al. [29] implemented the MOEA/D
method, integrating the benefits of feasible solutions (SF)
into MOEA/D to address the restrictions of the MOOPF.
The MOEA/D-SF was tested on 30- and 57-bus networks.
A modified pigeon-inspired optimization combined with a
constraint-objective sorting rule (MPIO-COSR) was intro-
duced by Chen et al. [30] to deal with the MOOPF consid-
ering three separate objective functions: emissions, fuel costs
with valve-point effects, and active power losses. The case
studies performed by Chen et al. [30] were repeated in [31]
using amulti-object beetle antennae search (NMBAS), in [32]
using a hybrid bat algorithm with constrained Pareto fuzzy
dominance (NHBA-CPFD), and in [33] using a hybrid firefly-
bat algorithm with a constraint-prior object-fuzzy sorting
strategy (HFBA-COFS). In [34], the OPF and MOOPF prob-
lems were solved by using joint self-adaptive PSO and dif-
ferential evolution (FAHSPSO-DE). This study considered
active power loss, fuel costs, and emissions as three objective
functions. Shaheen et al. [35] developed a multi-objective
quasi-reflected jellyfish search optimization (MOQRJFS)
to address the MOOPF problem. The authors validated
the performance of MOQRJFS on 30-bus, 57-bus, and
practical power networks in Egypt. It was concluded that
MOQRJFS was better than the original MOJFS. In [36], the
authors integrated an effective exploitation feature to develop
an improved heap-based optimizer algorithm (IHOA) to
deal with the MOOPF problem. The improved exploitation
approach helps the IHOA to increase the search for the best
solutions and avoid local trapping. To handle the MOOPF
problem, Qian et al. [37] suggested a modified hybrid bee-
tle antennae search (MHBAS) method with an adaptively-
adjusted step factor. The authors indicated that MHBAS was
better than NSGA-II and multi-objective differential evolu-
tion (MDE) for solution quality and computational cost. For
dealing with the MOOPF problem with different objectives,
Kahraman et al. [38] developed an improved multiple objec-
tive manta ray foraging optimizer (IMOMRFO) based on a
Pareto strategy and crowding distance method.

As can be seen from the literature review, MOEAs have
been widely used for solving MOOPF problems. They offer
decision makers a variety of trade-off solutions in one
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simulation run. However, because MOOPF requires com-
plex and large-scale optimization, no algorithm can effec-
tively optimize all of the problems. Hence, new or improved
MOEAs can be developed to find more efficient solutions to
MOOPF problems. Moreover, most previous studies evalu-
ated the performance of algorithms based on the best com-
promise solutions and Pareto optimal fronts. The efficiency
of MOEAs in solving the MOOPF problem should be thor-
oughly evaluated based on two crucial criteria, convergence
and distribution, using performance indicators such as spread
and hypervolume metrics. This requires us to offer a new
multi-objective method for generating Pareto optimal solu-
tions for the MOOPF.

This study aimed to develop and apply a new multi-
objective search group algorithm (MOSGA) to handle the
MOOPF problem formulated with fuel cost, emissions, and
active power loss objective functions. The control variables
of the problem include the real power output of the thermal
generator, voltage magnitude at generation bus, transformer
tap setting, and shunt VAR compensation. To develop the
MOSGA, archive selection, fast nondominated sorting, and
crowding distance strategies were combined with the original
SGA. The MOSGA was proposed to generate a Pareto front
with high convergence and diversity for theMOOPF solution.
The efficacy of the proposed MOSGA was verified in IEEE
30- and 57-bus systems. It was found that implementing
the MOSGA to handle the MOOPF problem resulted in
improved performance in power systems compared to the
initial metrics. Furthermore, the simulation results achieved
by the MOSGA were compared with those achieved by
the nondominated sorting genetic algorithm II (NSGA-II),
multi-objective ant lion optimizer (MOALO), multi-objective
grasshopper optimization algorithm (MOGOA), and other
previous studies in the literature. The comparisons were con-
ducted based on the optimal results of compromise solution,
spread metric, and hypervolume metric, which showed that
the MOSGA outperformed these approaches regarding solu-
tion quality.

The rest of this study is organized as follows. The MOOPF
problem is formulated in Section II. Section III describes the
proposed MOSGA and its implementation. Section IV gives
the simulation results. Section V presents the conclusion of
this study.

II. PROBLEM FORMULATION
The primary purpose of the MOOPF problem is to identify
the optimal control variables to optimize various objective
functions; inequality and equality constraints must also be
satisfied concurrently. The MOOPF problem is expressed as
follows [39]:

Minimize : F(u, x) = [F1(u, x),F2(u, x), . . . ,Fm(u, x)]

(1)

Subject to : g(u, x) ≤ 0 (2)

h(u, x) = 0 (3)

where u denotes the set of independent and control variables,
x signifies the set of dependent/state variables, F(u,x) rep-
resents the set of objective functions to be optimized, and
g(x,u) and h(x,u) refer to inequality and equality constraints,
respectively.

A. OBJECTIVE FUNCTIONS
The MOOPF problem considers three objectives that
reflect the economic, environmental, and technical factors,
as described below.

1) FUEL COST
The fuel cost of power generation is formulated using a
quadratic function as follows [1], [10]:

F1 =
NG∑
i=1

(ai + biPG,i + ciP2G,i) (4)

where NG indicates the number of generators, PG,i refers to
the active power output of the ith generator, and ai, bi, and ci
denote the cost coefficients of the ith generator.

2) EMISSIONS
Atmospheric pollutants are released during the generation
of electricity by thermal units using fossil fuels. The total
emissions (ton/h) of harmful gases are determined by the
following equation [40]:

F2 =
NG∑
i=1

[
(αi + βiPG,i + γiP2G,i)+ ωie

(µiPG,i)
]

(5)

where αi, βi, γi, ωi, and µi are the emission characteristics of
the ith generator.

3) ACTIVE POWER LOSS
Power loss in power systems is inevitable because transmis-
sion lines possess built-in resistances. The active power loss
is obtained as follows [10]:

F3 = PL =
NL∑
q=1

Gq(ij)
[
V 2
i + V

2
j − 2ViVj cos(θi − θj)

]
(6)

where Vi and θi symbolize voltage magnitude and voltage
angle at bus i, respectively, Gq(ij) represents the transfer con-
ductance between bus i and bus j, and NL symbolizes the
number of transmission lines.

B. CONTROL VARIABLES
The vector of control variables is signified by the following
equation [1]:

u = [PG,2, . . . ,PG,NG,VG,1, . . . ,VG,NG,QC,1, . . . ,QC,NC ,

T1, . . . ,TNT ]T (7)

where PG, VG, QC , and T denote the active power outputs
at the generation buses (PV buses) except the slack bus,
voltage magnitudes at the generation buses, shunt VAR com-
pensations, and transformer tap settings, respectively, NC
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symbolizes the number of shunt VAR compensators, and NT
symbolizes the number of transformer tap settings.

C. STATE VARIABLES
The vector of state variables can be defined in the following
equation [1]:

x = [PG,1,VL,1, . . . ,VL,ND,QG,1, . . . ,QG,NG,

SL,1, . . . , SL,NL]T (8)

where PG1, VL , QG, and SL denote the active power out-
put at the slack bus, voltage magnitudes at the load buses
(PQ buses), reactive power outputs of the generators, and
transmission line loadings, respectively, ND is the number of
load buses.

D. CONSTRAINTS
1) EQUALITY CONSTRAINTS
The equality constraints represent nonlinear power flow
equations that control power systems as follows [6]:

PG,i − PD,i = Vi
NB∑
j=1

Vj[Gij cos(θi − θj)+ Bij sin(θi − θj)]

i = 1, . . . ,NB (9)

QG,i − QD,i = Vi
NB∑
j=1

Vj[Gij cos(θi − θj)− Bij sin(θi − θj)]

i = 1, . . . ,NB (10)

where PD,i and QD,i respectively signify the active and reac-
tive load demands, Bij andGij denote the transfer susceptance
and conductance between buses i and j, respectively, and NB
symbolizes the number of buses.

2) INEQUALITY CONSTRAINTS
The inequality constraints describe operating limits of power
systems to guarantee system security:

Generator constraints: The voltage and the active and
reactive power outputs of the generators must be bounded by
the specified restrictions [8]:

Vmin
G,i ≤ VG,i ≤ Vmax

G,i ; i = 1, . . . ,NG (11)

Pmin
G,i ≤ PG,i ≤ Pmax

G,i ; i = 1, . . . ,NG (12)

Qmin
G,i ≤ QG,i ≤ Qmax

G,i ; i = 1, . . . ,NG (13)

Shunt VAR compensator constraints: The restrictions of
the shunt VAR compensators must be set as follows [8]:

Qmin
C,i ≤ QC,i ≤ Q

max
C,i ; i = 1, . . . ,NC (14)

Transformer constraints: The tap settings of the trans-
formers must be limited within their boundaries as follows
[12]:

Tmin
i ≤ Ti ≤ Tmax

i ; i = 1, . . . ,NT (15)

Security constraints: The limitations of the transmission
line loading and voltage magnitude at the load buses can be

formulated in the following constraints [12]:

SL,i ≤ Smax
L,i ; i = 1, . . . ,NL (16)

Vmin
L,i ≤ VL,i ≤ Vmax

L,i ; i = 1, . . . ,ND (17)

III. MULTI-OBJECTIVE SEARCH GROUP ALGORITHM
The proposedMOSGAwas developed by incorporating three
schemes: crowding distance, fast nondominated sorting, and
archive selection. The conventional SGA [41] and the pro-
posed MOSGA are introduced in the following subsections.

A. SGA
1) INITIAL POPULATION
In the search domain, population P is randomly created to
start the optimization process as follows [41]:

Pij = Xj,min + (Xj,max − Xj,min)U [0, 1];

i = 1, . . . , npop, j = 1, . . . , n, (18)

where Pij symbolizes the jth control variable of the ith indi-
vidual of P, Xj,min and Xj,max refer to the limitations of the jth

control variable, n signifies the number of control variables,
npop denotes the population size, and U [0,1] is the uniform
distribution.

2) SELECTION OF THE INITIAL SEARCH GROUP
The objective function values are computed for all individuals
from P once the initial population is established. From P, a
search group R with ng members is formed. The selection
process includes a tournament in which the best individu-
als are randomly selected from a chosen subgroup. Further
information about the tournament selection can be found in
[42]. At each iteration, the members of the search group R
are sorted based on their objective function values.

3) SEARCH GROUP MUTATION
At each iteration, the members of the search group R can
be mutated to boost the algorithm’s global searchability.
The nmut members from R are replaced by new individuals,
depending on the statistics of the current search group in
this mutation strategy. The aim is to create new members in
positions that are different from those of the current members,
allowing the algorithm to explore new regions of the design
domain. Consequently, new individuals can be created in the
following manner [41], [43]:

Xj,mut = E[R:,j]+ tεσ [R:,j]; j = 1, . . . , n, (19)

where Xj,mut denotes the jth control variable of a mutated
member, E and σ represent the mean value and standard devi-
ation operators, ε symbolizes a random number, t signifies
a parameter controlling how far away a new member can
be created, and R:,j represents the jth column of the search
group matrix. The likelihood of the members being mutated
is linked to their rank in the current search group. In other
words, they are more likely to replace the worst individuals.
An inverse tournament selection is used to accomplish this
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process, and this is a variation of the selection procedure
outlined in Section III.A.2. Here, the worst individuals are
replaced by new individuals by adopting Eq. (19).

Algorithm 1: Pseudocode of SG.A
1: Initialize the initial parameters ofSGA;
2: Generate the initial population P using Eq. (18);
3: Evaluate objective function value for each individual in the initial population P;
4: Create the initial search group Rk selecting ng individuals from the initial population;
5: Replace nmut , individuals by new members created as described in Eq. (19);
6: Generate the families Fi , using Eq. (20);
7: Select the new search group according to the rule:

- Global phase: search group Rk+1 is formed by the best member of each family;
- Local phase: search group Rk+1 is formed by the best ng individuals from Pareto archive.

8: Update αk+1 accordingly to Eq. (21);
9: Make k = k + 1, if k > Itermax go to Step 10, otherwise return to Step 5;
10: Solution found: x∗ = R1 ,:.

4) GENERATION OF FAMILIES FOR EACH MEMBER OF
SEARCH GROUP
Families are formed during this phase. A family includes a
search group member and individuals created by this search
group member. Fi denotes each family with i = 1 − ng.
Therefore, each member in the search group creates a family
as follows [41], [43]:

Xj,new = Rij + αε; j = 1, . . . , n, (20)

where α regulates the perturbation size. This parameter decre-
ments over iterations of the search procedure. The update of
α value at (k+ 1)th iteration can be expressed as:

αk+1 = bαk (21)

where b denotes an SGA parameter.
It should be noted that the variation in αk determines

how the search is to be performed. In the early iterations,
it is designed to allow any individual to visit any region in
the search space in a probabilistic sense; this highlights the
importance of exploration. The value of αk decreases as the
iterations progress. The search procedure narrows its scope
in favor of a more concentrated search of the promising areas
discovered. To avoid a null diversification value, parameter
αmin is defined, which is the lower limit of α.
Another significant feature of this approach is the size of

the family; this can also mean that the number of individuals
generated by a search group member can change depending
on their performance. Individuals with lower objective values
have larger families than those with higher objective values.
The vector υ is responsible for this feature, and it has the
same number of elements as the search group. The number
of individuals in the ith search group corresponds to the ith

value of the vector υ. To set up the proposed algorithm, two
principles must be followed: (i) sum(υ) = npop − ng and
(ii) υ i+1 ≤ υ i. The first principle aims to keep the number of
individuals constant at iterations, and the second is to allow
better individuals to create larger families.

5) SELECTION OF THE NEW SEARCH GROUP
The proposed method consists of two phases: local and
global. The primary goal of the algorithm during the initial
iterations is to explore the majority of the search domain,
which is the global phase. Thus, the best member of each fam-
ily is the next search group member. The selection strategy
is altered when the iteration number exceeds Iterglobal,max ,
and the best ng individuals from all of the families generate
a new search group. In this local phase, the algorithm tends
to exploit regions of the most recent best design. Algorithm
1 describes the pseudocode of SGA.

B. FAST NONDOMINATED SORTING AND CROWDING
DISTANCE STRATEGIES
Because a multi-objective problem contains more than one
objective function, it is not possible to sort individuals in a
population based on their objective function values. To obtain
uniformly distributed nondominated solutions, crowding dis-
tance computations and fast nondominated sorting [44] are
employed to create a ranking method for solutions in a mul-
tiobjective space.

Algorithm 2: Pseudocode of MOSGA
1: Initialize the parameters of MOSGA;
2: Randomly Generate the initial population P using Eq. (18);
3: Evaluate multiple objective function values for each individual in the initial population P;
4: Sort initial population P based on fast non-dominated sorting and crowding distance

techniques and store them in the Pareto archive;
5: Create the initial search group Rk selecting ng individuals from the initial population;
6: Replace nmut individuals by new members created as described in Eq. (19);
7: Generate the families Fi , using Eq. (20),
8: Store all newly created individuals in the advanced Pareto archive. Combine the current and

advanced archives;
9: Select the best solutions for new Pareto archive using Pareto archive selection mechanism;

10: Select the new search group according to the rule:

- Global phase: search group Rk+1 is formed by the best member of each family;
- Local phase: search group Rk+1 is formed by best ng individuals from Pareto archive;

11: Update αk+1 accordingly to Eq. (21);
12: Make k = k + 1, if k > Itermax , go to Step 13, otherwise return to Step 6;
13: Solution found: Pareto optimal solutions in the last Pareto archive.

In a fast nondominated sorting approach, two criteria are
identified for all of the solutions in the population: 1) domi-
nated count ni, which is the number of solutions that dominate
solution i, and 2) Si, which is a set of solutions dominated by
solution i. The first nondominated front includes all solutions
with a dominated count ni of zero. Then, we consider each
member (j) of set Sj and decrease its dominated count by one
for each solution i with ni = 0. Subsequently, any member
j with a dominated count of zero is placed in a separate list
J (second nondominated front). This method is repeated for
each member of J until the third front is discovered. This
procedure is continued until all fronts are determined. The
fast nondominated sorting method is shown schematically in
Fig. 1.

The density of solutions surrounding a specific solution
is then estimated by a crowding distance computation that
determines for each objective the average distance to two
points on each side. This method sorts the objective func-
tion values in the population in ascending order. An infinite
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FIGURE 1. Diagrammatic perspective of fast nondominated sorting
approach.

FIGURE 2. Simplified visualization of crowding-distance computation.

distance value is assigned to the solutions with the lowest
and highest function values for each objective (i.e., boundary
solutions). For all other intermediate solutions, a distance
value that equals the absolute normalized difference in the
function values of two neighboring solutions is calculated as
follows [44], [45]:

dij =
nobj∑
j=1

f(i+1),j − f(i−1),j
fj,max − fj,min

(22)

where nobj denotes the number of objectives; f(i+1),j and
f(i−1),j respectively signify the jth objective values for the
two neighboring solutions of solution i, fj,max and fj,min
respectively indicate the largest and smallest values of the
jth objective. Solutions located in less crowded areas have
greater crowding distance values than the other solutions.
Fig. 2 shows the crowding distance computation.

After the crowding distance and fast nondominated sorting
approaches have been completed, each individual has two
qualities: crowding distance (cd) and nondominated rank
(r). To obtain a uniformly spread Pareto optimal front, the
crowded-comparison operator (≺n) is used to compare the
two solutions in a multi-objective space as follows [44], [45]:

i ≺n j if (ri < rj) or ((ri = rj) and (cdi > cdj)) (23)

When two solutions are in different nondominated ranks, the
solution with the best rank is preferred. Otherwise, if both
solutions are of the same rank, a solution with a higher

FIGURE 3. Diagrammatic perspective of pareto archive selection.

crowding distance value is preferred. Hence, the crowded-
comparison operator provides a ranking method to sort indi-
viduals in a population in a multi-objective space.

C. PARETO ARCHIVE SELECTION
To conduct multi-objective optimization, a Pareto archive
of size N� stores the nondominated solutions. A selection
strategy is employed at every iteration to update the archive
and to prevent the loss of promising solutions [44]. Fig. 3 out-
lines the selection strategy. In the proposed MOSGA, all of
the newly produced solutions are included in an advanced
archive. At the end of the generation, the advanced and
current archives are combined. The size of the combined
set exceeds the size limit of the archive; thus, the archive is
truncated by discarding undesirable solutions. All solutions
in the combined archive are ranked using crowding distance
computations and fast nondominated sorting. Subsequently,
the best N� solutions from the combined archive correspond-
ing to the best nondominated ranks and crowding distance
values are selected as the new Pareto archive.

D. THE PROPOSED MOSGA
The MOSGA begins optimization by establishing a popula-
tion P of npop individuals. Objective value is then computed
for each individual within P. From P, the ng best individuals
are selected to generate a search group R based on a tour-
nament selection. The MOSGA then implements two stages:
mutation and generation of families. After these two stages,
an advanced archive set is obtained and merged with the
current archive. The archive selection strategy is executed
to define the best N� solutions for the new archive set. The
final process is to define a new search group via global and
local phases. On the global phase, a new search group is
generated from the best members of each family. Then, in the
local phase, a new search group is generated from the best ng
individuals in the new archive set. The optimization process
of the MOSGA continues until the stop criterion is satisfied.
The MOSGA pseudocode is shown in Algorithm 2.

E. APPLICATION OF MOSGA TO MOOPF PROBLEM
1) INITIALIZATION OF POPULATION
To deploy MOSGA for the MOOPF problem, the control
variables constitute individuals of the initial population P.
From Eq. (7), the size of the control variable is defined as
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follows:

n = 2NG+ NC + NT − 1 (24)

The position of the ith individual comprising n control
variables can be expressed as:

Pi = [Xi1,Xi2, . . . ,Xin] = [PiG,2, . . . ,PiG,NG,

ViG,1, . . . ,ViG,NG,QiC,1, . . . ,QiC,NC ,

Ti,1, . . . ,Ti,NT ]T ; i = 1, . . . , npop (25)

In a populationwith npop individuals, the populationmatrix
P is created using Eq. (18) as follows:

P =


X11 X12 . . . X1n
X21 X22 . . . X2n
...

...
. . .

...

Xnpop1 Xnpop2 . . . Xnpopn

 (26)

2) OBJECTIVE FUNCTION VALUE
The objective function values can be defined using the fol-
lowing equation:

F ′m = Fm + λP(PG,1 − PlimG,1)
2
+ λQ

NG∑
i=1

(QG,i − Qlim
G,i)

2

+ λV

ND∑
i=1

(VL,i − V lim
L,i )

2
+ λS

NL∑
i=1

(SL,i − Smax
L,i )

2

(27)

where Fm symbolizes the mth objective of the MOOPF prob-
lem, λP, λQ, λV , and λS are the penalty coefficients for the
inequality constraints of the state variables, namely active
power output at the slack bus, reactive power output at gener-
ation bus, voltage magnitude at the load bus, and line loading.
These penalty coefficients are set at high values to maintain
the state variables within tolerable limits and to eliminate
infeasible solutions [46]. Further, x lim denotes the violation
limit value of the dependent variable x as follows:

x lim =

{
xmax if x > xmax

xmin if x < xmin
(28)

3) BEST COMPROMISE SOLUTION
To make decisions, it is vital to define the best compro-
mise solution after obtaining the Pareto-optimal set. In this
study, this solution is identified from the trade-off curve
using fuzzy set theory. First, each objective of the ith solution
can be defined using the membership function µij, which is
expressed as follows [47]:

µij =


1 if fij ≤ fj,min

fj,max − fij
fj,max − fj,min

if fj,min ≤ fij ≤ fj,max

0 if fij ≥ fj,max

(29)

where fj,min and fj,max respectively denote the maximum and
minimum of the jth objective. A diagram of the fuzzy mem-
bership function is shown in Fig. 4.

FIGURE 4. Fuzzy membership function.

A higher membership function indicates that the solution
achieves greater satisfaction than other solutions. The nor-
malized membership function for each nondominated solu-
tion can be then written in the following equation [45]:

µi =

nobj∑
j=1
µij

npf∑
i=1

nobj∑
j=1
µij

(30)

where npf is the number of nondominated solutions. The best
compromise solution is the one with the largest normalized
membership function value (µi).

4) OVERALL PROCEDURE
The overall procedure of MOSGA application to handle the
MOOPF problem can be summarized in the next steps:
Step 1:Define data of the power test systems, fuel cost and

emissions coefficients, and the allowed limit of the control
variables.
Step 2: Choose MOSGA control parameters, namely the

population size (npop), number of search groupmembers (ng),
number of mutations (nmut ), perturbation size (α), Pareto
archive size (N�), maximum number of iterations of the
global phase (Iterglobal,max), and the maximum number of
iterations (Itermax).
Step 3: Create the initial population P of npop individuals

for the control variables within their limits, as described in
Section III.E.1.
Step 4: Perform the power flow based on Matpower 6.0 to

estimate the objective values (F1, F2, F3) for individuals of P
according to Eq. (27).
Step 5: Sort all individuals of P based on fast nondomi-

nated sorting and crowding distance, and put these individuals
into an archive.
Step 6: Define the initial search group Rk by selecting the

best ng solutions from P. Set i = 0.
Step 7: Set i = i+ 1.
Step 8: Accomplish the mutation stage for nmut members

according to Eq. (19).
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TABLE 1. Defining features of IEEE 30-bus and 57-bus systems.

TABLE 2. Different case studies of the MOOPF problem in this study.

Step 9: Family (Fi) is created for each member of the
search group based on Eq. (20).
Step 10: Save new created solutions in an advanced

archive. Integrate the current archive and advanced archive.
Step 11:NewPareto archive is defined by selecting the best

N� solution from the combined archive.
Step 12: Perform selection of the new search group as

follows:
• Global phase: Create a search group Rk+1 by selecting
the best member of each family.

• Local phase: Create a search groupRk+1 by selecting ng
best solutions from the archive.

Step 13: Define αk+1 as in Eq. (21).
Step 14: If i ≥ Itermax , go to Step 15; otherwise, return to

Step 7.
Step 15: Solutions are yielded: nondominated solutions in

the final archive.
Step 16: Determine the best compromise solution as in

Section III.E.3.
Fig. 5 depicts the flowchart of MOSGA for solving the

MOOPF problem.

IV. SIMULATION RESULTS
The applicability of MOSGA in solving the MOOPF prob-
lem was analyzed and verified using IEEE 30- and 57-bus
systems, which are detailed in Table 1. Furthermore, six
distinct case studies were used, as listed in Table 2, where
the objective functions are ticked in the respective boxes
for a particular case study. The simulation calculations were
performed using MATLAB 2019b. The parameter settings of

FIGURE 5. Flow chart of MOSGA for solving the MOOPF problem.

MOSGA were set as follows: npop = 100, ng = 20, nmut = 5,
α = 2, N� = 100, and Iterglobal,max = 0.3Itermax . Further-
more, themaximum iterations (Itermax) were set at 300 for the
30-bus system and 500 for the 57-bus system. The MOSGA
executed 30 independent trials for each case, and the optimal
results were analyzed.

A. IEEE 30-BUS SYSTEM
First, the MOSGA was assessed using a 30-bus system.
Fig. 6 illustrates the topology diagram of this system; detailed
data can be found in [48]. The constants for fuel cost and
emissions are provided in Table 3. For the initial case, the fuel
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TABLE 3. IEEE 30-bus system: fuel cost and emissions constants [1], [48].

FIGURE 6. IEEE 30-bus test system.

FIGURE 7. Pareto optimal front for Case 1.

cost was $901.85/h, emissions were 0.2391 ton/h, and active
power loss was 5.7866 MW.

1) CASE 1
In Case 1, the MOSGA was used to optimize the fuel cost
and emissions concurrently. Fig. 7 depicts the tradeoff curve
relationship between the fuel cost and emissions in the Pareto
optimal front obtained by the MOSGA. It can be observed
thatMOSGAhas a Pareto optimal front with a highly uniform
distribution. Table 4 summarizes the permissible limits of
the control variables and the results for the best compro-
mise solution and best solutions for the individual objectives
(corresponding to the outer extremes of the Pareto front)
for Case 1. Table 4 also lists the data for the initial case
of the 30-bus system. The fuel cost for the initial case was

FIGURE 8. Pareto optimal front for Case 2.

$901.85/h, and the emissions amounted to 0.2391 ton/h. For
the simultaneous optimization of cost and emissions, the opti-
mal results of the best compromise solution achieved by the
MOSGA were $830.6940/h and 0.2495 ton/h, respectively.
Based on the results, the reduction in fuel cost associated
with the best compromise solution was 7.8902%; however,
emissions increased slightly by 4.3679% compared to the
initial case.

Table 5 presents a comparative analysis of the best indi-
vidual solutions (i.e., the solutions with the lowest fuel cost
and lowest emissions) for Case 1. Most previous studies
have only reported the best compromise solutions without
reporting the best individual results. Table 5 shows that the
MOSGA was able to obtain the best individual solutions for
both fuel cost and active power loss objectives. Further, the
MOSGA obtained a vast range for the individual objectives,
thus demonstrating that MOSGA provided a diverse Pareto
optimal front in this case. Table 6 compares the best compro-
mise solution fromMOSGA with those of other optimization
algorithms. It can be seen that the MOSGA solution (fuel
cost of $830.69/h and emissions of 0.2495 ton/h) dominated
the ESDE [22] (fuel cost of $833.47/h and emissions of
0.2540 ton/h) and ESDE-EC [22] (fuel cost of $831.09/h and
emissions of 0.2510 ton/h). Moreover, the solution provided
by MOSGA was not inferior to those provided by the other
algorithms in Table 6. Hence, MOSGA has great potential
and advantages for finding a highly competitive solution.

2) CASE 2
In Case 2, the fuel cost and active power loss objective
functions were investigated. These objective functions were
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TABLE 4. Simulation results for Cases 1 and 2.

TABLE 5. Comparative analysis of best individual solutions for Case 1.

simultaneously minimized using MOSGA. Fig. 8 shows a
graphical representation of the evenly distributed Pareto opti-
mal front yielded from MOSGA. Table 4 lists the optimal
results for the control variables and objective functions for
the fuel cost solution, active power loss solution, and the best
compromise solution for Case 2. The initial case had a fuel
cost of $901.85/h and an active power loss of 5.7866 MW.
The optimal results obtained by MOSGA were a fuel cost
of $848.56/h and an active power loss of 4.8975 MW, which
were 5.9092% and 15.3642%, respectively, which were lower
than the initial case. It is apparent that the fuel cost and active
power loss were both significantly reduced using MOSGA.

TABLE 6. Comparison of best compromise solutions for Case 1.

Table 7 compares the best compromise solution obtained
by MOSGA with the reported results for the other meth-
ods for Case 2. Although the best compromise solution of
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TABLE 7. Comparison of best compromise solutions for Case 2.

FIGURE 9. Pareto optimal front for Case 3.

MOSGA (fuel cost of $848.56/h and active power loss of
4.8975 MW) was not substantially better than those in the
literature, MOSGA obtained the lowest active power loss
value in its best compromise solution. Thus, the proposed
MOSGA performed better than other methods in producing a
compromise solution.

3) CASE 3
MOSGA was employed for the case with three optimized
objective functions to verify its performance in detail. In this
case, the fuel cost, emissions, and active power loss are
optimized concurrently. Fig. 9 shows the Pareto optimal solu-
tions generated by MOSGA, which shows the relationships
between the three objectives. These solutions cover the entire
Pareto optimal front with a uniform distribution. From Fig. 9,
it can be observed that the three objectives are contradictory.
Table 8 presents the results for the best fuel cost, emissions,
active power loss solutions, and the best compromise solution
acquired by MOSGA. The best compromise solution was
obtained from the Pareto optimal set to offer an operating
point for solving the MOOPF problem with a fuel cost of
$857.58/h, emissions of 0.2288 ton/h, and an active power
loss of 4.7379 MW, representing reductions of 4.9089%,
4.2911%, and 18.1223%, respectively, compared to the initial
case.

A comparison of the optimal compromise solutions for
Case 3 is presented in Table 9. In an optimization problem

TABLE 8. Simulation results for Case 3.

TABLE 9. Comparison of best compromise solutions for Case 3.

with three objective functions, as in Case 3, no single solution
can outperform the others for all three objective functions.
However,MOSGAobtained a better fuel cost value in the best
compromise solution than the others in Case 3. Therefore,
MOSGAachieved themost advantageous solution for Case 3.

As can be seen from the results obtained for Case 3, the
implementation ofMOSGA to solve theMOOPF problem led
to a substantial enhancement in all three objective functions.
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FIGURE 10. Voltage magnitude at load buses for best compromise
solution for Cases 1, 2, and 3.

Therefore, the best compromise solution fulfilled all objective
functions concurrently to a great extent. Furthermore, one of
the crucial aspects of the MOOPF problem is maintaining the
dependent variables within specific ranges. Tables 4 and 9
also show the values of the dependent variables for Cases 1, 2,
and 3, including the active power generation at the slack bus
and the reactive power outputs of the generators. Moreover,
Fig. 10 shows the voltages at the load buses of the system for
Cases 1, 2, and 3. It is worth noting that this study applied
voltage limits at the load buses of 0.95 p.u.–1.05 p.u. for
the IEEE 30-bus system, as referenced in [29], which is a
much narrower range than the range of 0.90 p.u.–1.10 p.u.
used in most other studies. A narrower range increases the
difficulty of solving theMOOPF problem in case studies. It is
evident from Table 4, Table 9, and Fig. 10 that all boundaries
were satisfied for the constraining variables. Therefore, the
superiority of the proposed MOSGA was proven in terms
of solution feasibility and optimality, showing its overall
potential and efficacy.

B. IEEE 57-BUS SYSTEM
The scalability of MOSGA was verified for application in
an IEEE 57-bus system. Fig. 11 illustrates a topology dia-
gram for the system, and the fuel cost and emission con-
stants are listed in Table 10. The detailed data can be found
in the literature [49], [50]. The system had a fuel cost of
$51348.22/h, emissions of 2.7590 ton/h, and an active power
loss of 27.8637 MW for the initial case.

1) CASE 4
In this case, the performance of the MOSGA for the simul-
taneous optimization of the fuel cost and emissions was
considered. Fig. 12 shows a graphical representation of the
Pareto optimal front generated by MOSGA, demonstrating
a trade-off curve of the fuel cost and emissions objectives.
Similar to the 30-bus system, MOSGA acquired a uniformly
distributed Pareto optimal front. Table 11 lists the permissi-
ble limits of the control variables and the simulation results
for Case 4. The fuel cost and emissions were significantly

FIGURE 11. IEEE 57-bus system.

FIGURE 12. Pareto optimal front for Case 4.

reduced from $51319.83/h and 2.7574 ton/h in the initial case
to 42497.0130 $/h and 1.2712 ton/h, yielding reductions of
17.1918% and 53.8992%, respectively.

Table 12 presents the best individual objectives obtained by
the MOSGA with the available tabulated results of GBICA
and MGBICA for Case 4. Because MOSGA can achieve a
minimum fuel cost of $41709.15/h and minimum emissions
of 1.0814 ton/h, MOSGA outperformed GBICA [21] and
MGBICA [21] on individual best objectives. Thus, the Pareto
optimal front of MOSGA has better diversity characteristics
than those of GBICA [21] and MGBICA [21]. A comparison
of the best compromise solution acquired by MOSGA with
studies available in the literature is presented in Table 13.
Based on the fuel cost and emissions values, the best com-
promise solution of MOSGA ($42497.01/h and 1.2712 ton/h)
was better than the solutions offered by nondominated sort-
ing genetic algorithm (NSGA-II) [23], rNSGA-II [23], and
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TABLE 10. IEEE 57-bus system: fuel cost and emissions constants [12], [29].

TABLE 11. Simulation results for Cases 4 and 5.

MOQRJFS [35] in previous studies, although it was not
superior to the other methods. However, no method offered a
significantly better solution than MOSGA’s best compromise
solution.

2) CASE 5
Case 5 addresses the fuel cost and active power loss, which
are two conflicting objective functions. Fig. 13 shows the
Pareto optimal front generated byMOSGA. Table 11 presents
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TABLE 12. Comparative analysis of best individual solutions for Case 4.

TABLE 13. Comparison of best compromise solutions for Case 4.

TABLE 14. Comparison of best compromise solutions for Case 5.

the simulation results for case 5. The fuel cost and
active power loss for the best compromise solution were
$41994.61/h and 11.8514 MW, respectively. Compared with
the initial case ($51319.83/h and 27.5627 MW), the fuel
cost and active power loss were considerably reduced by
18.1708% and 57.0020%, respectively.

A comparative study of compromise solutions for Case 5
is presented in Table 14. MOSGA found a good-quality solu-
tion, with a fuel cost of $41994.61/h and an active power
loss of 11.8514 MW. The proposed MOSGA not only pro-
duced better results than ESDE [22], ESDE-EC [22], and
MOJFS [35] but also yielded the second-best value for the
fuel cost objective. Therefore, MOSGA has an advantage

FIGURE 13. Pareto optimal front for Case 5.

TABLE 15. Simulation results for Case 6.

over comparablemethods for the quality of the Pareto optimal
solutions obtained.
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TABLE 16. Comparison of best compromise solutions for Case 6.

FIGURE 14. Pareto optimal front for Case 6.

3) CASE 6
In this case, MOSGA simultaneously optimizes three objec-
tive functions: fuel cost, emissions, and active power loss.
The Pareto optimal front generated by MOSGA is depicted
in Fig. 14. The simulation results for Case 6 are summarized
in Table 15. In the best compromise solution, the MOSGA
yielded a fuel cost of $42815.78/h, emissions of 1.3219 t/h,
and an active power loss of 10.7648 MW, which represented
reductions of 16.5707%, 52.0605%, and 60.9443%, respec-
tively, in comparison to the initial case.

Table 16 compares the best compromise solution obtained
by MOSGA with the results of the other methods reported
in the literature for Case 6. In the tri-objective optimiza-
tion of Case 6, MOSGA outperformed MPIO-PFM [30],
NSGA-II [33], HFBA-COFS [33], FAHSPSO-DE [34], and
MOQRJFS [35] for all three objectives in the best compro-
mise solution. No other method was superior with respect
to all of the objective functions. Nevertheless, MOSGA
achieved better emissions and active power loss in the best
compromise solution than other methods. It can be concluded
that MOSGA is noticeably superior to all the algorithms
considered in generating a better Pareto optimal front.

From the results of Case 6, it may be observed that the
application of MOSGA to the MOOPF problem demon-
strated a significant advance in all three objectives. Moreover,
Tables 11 and 15 present the results of the dependent variables
corresponding to the solutions considered for Cases 4, 5,
and 6, and show that all the obtained values of the dependent
variables were within the allowable limits of the system.

FIGURE 15. Voltage magnitude at load buses for best compromise
solution for Cases 4, 5, and 6.

FIGURE 16. Schematic view of the 1 metric.

Fig. 15 shows the voltages at the load buses for cases 4, 5,
and 6; all the results are within the allowable voltage limits
(0.94 p.u.–1.06 p.u.) of the load buses for the 57-bus system.
Again, the optimization results confirm the advantages of
MOSGA in terms of solution optimality and feasibility.

C. NUMERICAL COMPARISONS
To further verify the advantages of MOSGA, its performance
was compared with those of three well-known algorithms: the
nondominated sorting genetic algorithm II (NSGA-II) [44],
multi-objective ant lion optimizer (MOALO) [51], multi-
objective grasshopper optimization algorithm (MOGOA)
[52], and multi-objective lichtenberg algorithm (MOLA)
[53]. The control parameters for MOSGA were the same
as those given in Sections V.A and V.B. With NSGA-II,
the crossover probability was set to 0.9, the mutation prob-
ability to 0.5, and the mutation and crossover operators
to 20. In MOGOA, the minimum and maximum values
of the decreasing coefficient (cmin and cmax) were set to
0.00004 and 1, respectively. As for MOLA, the refinement,
stick probability, creation radius, and switching factor were
chosen as 0.4, 1, 150, and 0, respectively. For a fair compar-
ison, the other main parameters were set to the same value
for all algorithms: population size = 100, Pareto archive
size = 100, and maximum iterations = 300 for the 30-bus
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FIGURE 17. Box plots of 1 metric of multi-objective algorithms.

FIGURE 18. Schematic view of the HV metric.

system and 500 for the 57-bus system. In each case, the
optimization outputs were examined in 30 independent trials
for each algorithm based on two performance metrics: spread
and hypervolume.

1) SPREAD INDICATOR
The spread (1) metric is used to show the diversity of the non-
dominated solutions obtained by an algorithm. Fig. 16 shows
a schematic view of the1 metric, which measures the distri-
bution of Pareto optimal solutions and the spread of extreme
solutions, as shown below [54]:

1 =

m∑
i=1

d(Ei, �)+
∑

X∈�

∣∣d(X , �)− d̄∣∣
m∑
i=1

d(Ei, �)+ (|�| − m) d̄
(31)

where

d(X , �) = min
Y∈�,Y 6=X

‖F(X )− F(Y )‖ (32)

d̄ =
1
|�|

∑
X∈�

d(X , �) (33)

where � denotes the generated Pareto optimal front, and
Ei denotes the ith extreme solution in the true Pareto front.
The minimum value of the 1 metric demonstrates the best
diversity (better extent of distribution and spread) in a Pareto
optimal set.

Table 17 compares the 1 metrics for different algorithms.
It can be inferred that the performance of MOSGA was
much better than that of the other techniques for most case
studies. Fig. 17 further demonstrates the distributions of 1
metric values, with box plots of the 1 metric from MOSGA,
NSGA-II, MOALO, MOGOA, and MOLA. MOSGA had the
lowest median (as shown by the red line) and lowest value (as
shown by the bottom solid line) for all case studies. Therefore,
MOSGA had an advantage in terms of finding uniformly
distributed nondominated solutions, and the nondominated
sets found by MOSGA had better diversity than the other
algorithms. Therefore, MOSGA had an advantage in terms
of finding uniformly distributed nondominated solutions, and
the nondominated sets found byMOSGA had better diversity
than the other algorithms.

2) HYPERVOLUME INDICATOR
For a problem in which all objectives need to be minimized in
the objective space, the hypervolume (HV) metric is used to
calculate the volume enclosed by the members of a Pareto
optimal set (�). With reference point W , hypercube vi is
mathematically created for each solution i ∈ �, where
solution i is a diagonal corner of the hypercube. A reference
point is generated from a vector of the worst objective values.
Subsequently, a union of all hypercubes is constructed, and
the HV of this union can be determined [55]:

HV =
|�|⋃
i=1

vi (34)
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TABLE 17. Comparative analysis of 1 indicator of multi-objective algorithms.

TABLE 18. Comparative analysis of HV indicator of multi-objective algorithms.

FIGURE 19. Box plots of HV metric of multi-objective algorithms.

TABLE 19. Comparisons of computational time for multi-objective
methods.

As shown in Fig. 18, the HV is depicted as a hatched area.
A method with a higher HV value is preferable.

Table 18 compares the optimal results of the different
algorithms with respect to HV, which is a robust approach
to evaluating an algorithm in terms of both convergence and
diversity. As can be seen from Table 18, MOSGA obtained
the highest HV values for all case studies. To visualize the
comparative analysis of the HV metric, box plots of HV
indicators fromMOSGA, NSGA-II, MOALO,MOGOA, and
MOLA are depicted in Fig. 19, which shows that MOSGA
had the highest median and maximum values compared to
the other three algorithms. Therefore, MOSGA exhibited
better convergence and diversity performance than OSGA,
NSGA-II, MOALO, MOGOA, and MOLA.
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3) COMPUTATIONAL COST
This study used a 2.6 GHz 4-core PC with 16 GB of RAM
to implement the MOSGA algorithm and four comparison
methods. The computation times of these multi-objective
methods are discussed in Table 19. For six case studies,
MOSGAhas the lowest computational cost compared to other
methods, as shown in Table 19. It can be concluded that
MOSGA not only obtained a better solution to the MOOPF
problem but also has a very efficient computation cost.

V. CONCLUSION
In this study, the MOOPF problem was solved to address
the objective functions of fuel cost, emissions, and active
power loss. The newMOSGA effectively defined the optimal
operation points of the control variables in power systems
while meeting all operating constraints. The performance of
MOSGA was demonstrated on 30- and 57-bus systems with
six case studies. The implementation of MOSGA to deal
with the MOOPF problem significantly reduced the fuel cost
and emissions and improved the active power loss in power
systems. These benefits can be clearly seen in Case 6, where
the fuel cost, emissions, and active power loss levels were
reduced by 16.5707%, 52.0605%, and 60.9443%, respec-
tively, compared to the initial case. The comparison results
indicate that the proposed MOSGA outperformed other tech-
niques in terms of the quality of optimal solutions, especially
for large-scale systems. MOSGA yielded well-distributed
nondominated solutions that spread over the Pareto optimal
front for all considered cases, which proves that MOSGA has
better convergence and diversity characteristics than the other
methods. Consequently, it can be concluded that MOSGA is
a promising alternative for solving the MOOPF problem.

NOMENCLATURE
ai, bi, ci Cost coefficients of the ith generator.
d Crowding distance.
E Mean operator.
f(i+1),j, f(i−1),j jth objective values for the two neighbor-

ing solutions i+ 1 and i− 1 of solution
i.

fj,max, fj,min Largest and smallest values of the jth

objective function.
F(u,x) Set of objective functions to be opti-

mized.
Gij,Bij Transfer conductance and susceptance

between buses i and j.
Gq(ij) Transfer conductance between buses i

and j.
g(x,u) Set of inequality constraints.
h(x,u) Set of equality constraints.
Itermax Maximum number of iterations.
Iterglobal,max Maximum number of iterations of the

global phase.
n Number of control variables.
NB Number of buses.

NC Number of shunt VAR compensators.
ND Number of load buses.
NG Number of generators.
ng Number of search group members.
NL Number of transmission lines.
nmut Number of mutations.
npop Population size.
nobj Number of objective functions.
npf Number of nondominated solutions.
NT Number of transformers.
N� Pareto archive size.
PD, QD Active and reactive load demands.
PG1 Active power output at the slack bus.
PG,i Active power output of the ith generator.
Pij jth control variable of the ith individual

of population P.
PL Active power loss in power systems.
QC Shunt VAR compensation.
QG Reactive power output of the generator.
r Nondominated rank.
R:,j jth column of the search group matrix.
SL Transmission line loadings.
t A parameter controlling how far away a

new member can be created.
T Transformer tap setting.
u Set of independent and control vari-

ables.
VG Voltage magnitude at the generation

bus.
Vi Voltage magnitude at buses i.
VL Voltage magnitudes at the load bus.
x Set of dependent/state variables.
Xj,mut jth control variable of a mutated member
αi, βi, γi, ωi, µi Emission characteristics of the ith gen-

erator.
αk Perturbation factor at k th iteration.
θi Voltage angles at buses i.
λP, λQ, λV , λS Penalty coefficients for the inequality

constraints.
µi Normalized membership function

value.
σ Standard deviation operators.
≺n Crowded-comparison operator.
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