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H I G H L I G H T S  

• Multi-objective optimal power flow of thermal-wind-solar power system is formulated. 
• Uncertainties of wind and solar irradiance distribution are simulated using different probability density functions. 
• An adaptive geometry estimation based multi-objective differential evolution is proposed. 
• Various case studies with combinations of two-, three-, or four-objective optimization are performed. 
• The superiority of the proposed method over other state-of-the-art algorithms is confirmed.  
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A B S T R A C T   

Sustainable energy is a key component of sustainable development. The current grid can be supplied by fossil fuel 
generators and renewable energy sources (RESs)-based generators, such as solar photovoltaic (PV) and wind 
power generators. In an electrical network, power generation from several sources must be optimally coordi-
nated to ensure efficient and economical operation. However, the intermittent and uncertain nature of RESs 
complicate the operation of power systems. In this study, an adaptive geometry estimation-based multi-objective 
differential evolution (AGE-MODE) method is proposed for multi-objective optimal power flow in a hybrid power 
system of thermal, wind, and solar energy sources (MOOPF-TWS). In the proposed approach, wind and solar PV 
power outputs are predicted based on Weibull and lognormal probability distribution functions, respectively. 
Therefore, the generation costs for solar and wind power can be divided into direct costs, penalty costs for 
underestimation, and reserve costs for overestimation. Furthermore, the emissions, voltage deviation, and real 
power loss are considered in particular cases. AGE-MODE is applied to modified IEEE 30-bus and 57-bus systems, 
where different case studies are simulated with combinations of two-, three-, and four-objective optimizations in 
MOOPF-TWS problems. Comparisons between AGE-MODE and other recently developed multi-objective 
methods demonstrate its effectiveness in resolving MOOPF-TWS problems, particularly for cases with more 
than two objectives.   

1. Introduction 

Optimal power flow (OPF) is critical for maintaining the reliable and 
economical operation of deregulated power grids. The OPF can be 

expressed as a single-objective or multi-objective framework aimed at 
minimizing the generation cost, emissions, voltage deviation, and 
transmission losses, with constraints related to the power flow equa-
tions, equipment operating limits, and system security. The OPF prob-
lem defines the optimal operating state of the power system and the 
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corresponding settings of the control variables, active power output, 
generator voltage magnitude, shunt compensators, and transformer tap 
settings. The traditional OPF problem, which considers only fossil fuel 
energy sources, is essentially a large-scale, multidimensional, non-
convex, nonlinear, and complex optimization problem. Renewable en-
ergy sources (RESs) are becoming increasingly important to mitigate the 
environmentally harmful impacts of traditional energy sources. As some 
of the fastest-growing clean energy sources, solar and wind energy 
sources have steadily increased worldwide over the past few decades. 
Despite the inherent advantages of pollution reduction and resource 
conservation, the uncertain nature of power production from RESs may 
pose difficulties in the operation and distribution of the power system. 
The optimal dispatch of these sources is the key to their successful 
integration into a secure and profitable grid and electricity market. 
Therefore, the OPF problem must be extended to consider the stochastic 
nature of wind and solar energies when integrating these intermittent 
energy sources into a grid. 

Over the past few decades, researchers have extensively studied so-
lutions to traditional OPF problems using only thermal power genera-
tors. Numerous evolutionary algorithms (EAs) have been developed 
with the advancement of soft computing. These methods have the 
advantage of being less susceptible to the specific characteristics of the 
problems and can handle large-scale search spaces. Moreover, the 
population-based nature of these algorithms enables them to simulta-
neously estimate multiple points in a search domain. Therefore, EAs can 
effectively solve OPF problems. Some of the latest applications of EAs to 
traditional OPF problems include differential evolution (DE) [1–3], 

moth swarm algorithm (MSA) [4,5], most valuable player algorithm 
(MVPA) [6], biogeography-based optimization (BBO) [7], grey wolf 
optimizer (GWO) [8], and salp swarm optimization (SSO) [9]. 

In the aforementioned studies, the OPF was constructed as a single- 
objective problem, and different objective functions were aggregated 
into a single-objective function. Although these approaches are simple, 
they cannot represent a reasonable trade-off between objective func-
tions when all the objective functions are important. Therefore, re-
searchers have focused on multi-objective OPF (MOOPF) problems to 
provide compromise solutions among different objective functions, 
namely generation costs, emissions, voltage deviation, and transmission 
losses. Multi-objective EAs (MOEAs) have been evaluated as suitable for 
multi-objective problems [10]. Without aggregating objective functions, 
MOEAs can solve multi-objective functions simultaneously in a single 
run. There have been significant developments in the studies and ap-
plications of MOEAs to the MOOPF problem, such as the multi-objective 
search group algorithm (MOSGA) [11], non-dominated sorting genetic 
algorithm III (NSGA-III) [12], hybrid SSO and particle swarm optimizer 
(HSSO-PSO) [13], multi-objective beetle antennae search (NMBAS) 
[14], multi-objective jellyfish search (MOJFS) [15], MOEA based on 
decomposition (MOEA/D) [16], improved heap-based optimization al-
gorithm (IHOA) [17], modified hybrid beetle antennae search (MHBAS) 
[18], and multi-objective manta ray foraging optimizer (MOMRFO) 
[19]. 

Recently, RESs have been widely used in electric power systems. 
Researchers have expanded the OPF problem to consider systems that 
include thermal power and RESs. To solve the OPF framework, Biswas 

Nomenclature 

ak, bk, ck cost coefficients of the kth thermal power unit 
Cs,j, CRs,j, CPs,j direct cost, reserve cost, and penalty cost of the jth 

solar PV power plant 
CTP fuel cost of thermal power units 
Cw,i, CRw,i, CPw,i direct cost, reserve cost, and penalty cost of the ith 

wind power plant 
dk, ek coefficients representing the valve-point effects of the kth 

thermal power unit 
E(Psav,j < Pss,j) expectation of solar PV power lower than the 

scheduled power 
E(Psav,j > Pss,j) expectation of solar PV power higher than the 

scheduled power 
fs(Psav,j < Pss,j) likelihood of shortfall of solar PV power 
fs(Psav,j > Pss,j) likelihood of an excess of solar PV power 
fw(pw,i) probability distribution function of the ith wind power 

plant 
Gij, Bij transfer conductance and susceptance between the ith bus 

and jth bus 
Gn(ij) transfer conductance of the nth branch connecting ith bus 

and jth bus 
Gs solar irradiance 
Gstd solar irradiance in the standard environment 
g(x,u) set of inequality constraints 
h(x,u) set of equality constraints 
KDs,j, KRs,j, KPs,j direct cost, reserve cost, and penalty cost coefficients 

of the jth solar PV power plant 
KDw,i, KRw,i, KPw,i direct cost, reserve cost, and penalty cost 

coefficients of the ith wind power plant 
NB number of buses 
NC number of VAR compensators 
ND number of load buses 
NG number of generation buses 
NSP number of solar PV power plants 

NTP total number of thermal power units 
NWP number of wind power plants 
NL number of transmission lines 
NT number of regulating transformers 
PD, QD real and reactive power demands 
PG, QG real and reactive power generation from power sources 

(thermal, wind, and solar) 
PTP,1 real power generation of the reference bus 
Psr rated power of solar PV 
Psav,j actual available power of the jth solar PV power plant 
Pss,j scheduled power of the jth solar PV power plant 
PTP,k real power output of the kth thermal power unit 
Pwav,i actual available power of the ith wind power plant 
Pwr,i rated power of the ith wind power plant 
pwr rated power of a wind turbine 
Pws,i scheduled power of the ith wind power plant 
QC shunt VAR compensation 
Rc certain irradiance point 
SL transmission line loading 
T transformer tap setting 
u, x vectors of control and state variables 
VD voltage deviation 
VG generation bus voltage magnitude 
Vi voltage magnitude at ith bus 
VL load bus voltage magnitude 
α, β scale and shape factors of the Weibull probability 

distribution function 
δij difference in voltage angles between the ith bus and jth bus 
αk, βk, γk, ωk, μk coefficients of emission of the kth thermal power unit 
λP, λQ, λV, λS penalty factors for the inequality constraints 
μ, σ mean and standard deviation of the lognormal probability 

distribution function 
υ wind speed 
υin, υout, υr cut-in speed, cut-out speed, and rated speed of a wind 

turbine  
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et al. [20] proposed a hybrid system comprising three thermal genera-
tion units, a solar photovoltaic (PV) farm, and two wind farms. The costs 
of the solar and wind generators added penalty and reserve costs for 
underestimation and overestimation, respectively. The total operational 
costs and carbon taxes of various power sources were resolved as a 
single-objective model using a successful history-based adaptation of DE 
and the superiority of feasible solutions (SHADE-SF). Ullah et al. [21] 
addressed an optimum generation scheduling problem by combining 
solar and wind power systems using a fusion of phasor PSO and the 
gravitational search algorithm (PPSOGSA). The author in [22] per-
formed optimal scheduling with combined heat and power along with 
wind power, wherein a modified moth swarm optimizer algorithm 
(MMSA) was used to resolve the scheduling problem. FACTS devices 
were investigated in [23] for a system involving thermal and wind 
generation, and the OPF framework was resolved based on a chaotic 
PSOGSA. OPF solutions with numerous energy sources were studied 
using a hybrid modified imperialist competitive algorithm and sequen-
tial quadratic programming (HMICA-SQP) in [24]. In [25], the authors 
combined PSO and the DE method (DEEPSO) to resolve a stochastic OPF 
by considering controllable solar and wind energies in 30-, 57-, and 
118-bus networks. In another study, a fusion of the fitness–distance 
balance (FDB) and adaptive guided DE (AGDE) was performed to resolve 
the OPF problem in a 30-bus network connected to wind and solar power 
[26]. The FDBAGDE was validated using benchmark functions and OPF 
planning, which proved its effectiveness in determining the optimal 
solution. An OPF with thermal-wind energies was proposed in [27] 
using the coyote optimizer algorithm (COA), wherein a single-objective 
problem was formed by transforming the multi-objective problem. 
Sulaiman et al. [28] applied a barnacles mating optimizer (BMO) to 
resolve the OPF framework in a coordination model of a stochastic 
solar-wind-small hydropower system. In Ref. [29], the grey wolf algo-
rithm (GWO) was hybridized with the analytic hierarchy process to 
perform a similar study on OPF. In [30], an adaptive FDB-based sto-
chastic fractal search (AFDB-SFS) was suggested as a solution to address 
the OPF problem, which involves the integration of solar, wind, tidal, 
and small hydro energies. The authors in [31] developed a modified 
runge Kutta optimizer (MRUN) for handling stochastic OPF by incor-
porating a thyristor-controlled series compensator, wind turbine, and PV 
systems. 

Several studies have investigated MOEAs for MOOPF problems with 
RESs. The non-dominated PSO (NSPSO) method was modified with 

stochastic weights and chaotic mutation in [32] to acquire 
non-dominated solutions while implementing a similar protocol for 
wind power, similar to that in [20]. The same framework was considered 
in [33] when using a multi-objective glowworm swarm optimizer 
(MOGWO). Stochastic modeling was formulated for small hydro, solar, 
and wind power uncertainties in [34] by applying summation-based 
multi-objective DE (SMODE) and MOEA/D to a power generation 
scheduling problem. In employing a constrained multi-objective popu-
lation extremal optimizer (CMOPEO) in a multiobjective 
economic-emission framework, the authors in [35] considered the 
valve-point effects of thermal generators and costs for uncertain wind 
energy. In a recent study, the author demonstrated a multi-objective 
version of AGDE (MOAGDE) to solve the MOOPF problem, including 
solar, wind, and small hydropower sources replacing thermal generators 
at various nodes of a 30-node network [36]. Li et al. [37] adopted an 
adaptive crossover non-dominated sorting DE (ACNSDE) to resolve the 
MOOPF, wherein uncertain wind power was simulated using the Wei-
bull probability density functions (PDF). The authors of [38] suggested 
an approach called the MOSGA to resolve the MOOPF problem with 
different PDFs for solar and wind energies. However, the valve-point 
effects of conventional generators were not investigated. Lv et al. [39] 
developed a multi-objective quadratic interpolation-learning DE 
(MOQILDE) to solve the MOOPF problem in hybrid power systems of 
thermal generators and solar photovoltaic plants. In [40], the MOOPF 
problem with stochastic tidal, solar, and wind energies was modeled and 
solved using a multi-objective pathfinder optimization algorithm 
(MOPFA). In that study, the authors investigated only a small-scale 
30-bus system. 

A brief comparison of the studies on MOOPF-RES problems is pro-
vided in Table 1. As deduced from the literature review and Table 1, the 
research gaps in MOOPF with stochastic RES penetration are as follows: 

1. Although extensive research has been conducted on OPF incorpo-
rating RESs, MOOPF combined with RESs has been expressed as a 
single-objective framework of generation costs or as a multi- 
objective framework based on the weighted metric method 
[20–31]. The weighted metric method may not provide a suitable 
solution to multi-objective problems, particularly when the objective 
functions are conflicting. An appropriate approach for 
multi-objective problems is to use MOEAs to find a set of 
non-dominated solutions, thereby selecting an optimal solution 

Table 1 
Brief comparison of the reviewed references and current study on MOOPF problems incorporating with RESs.  

Refs. Objective functions RESs Systems Approach Solution method 

Cost Emission Loss Voltage deviation Wind Solar 

[20] √ √ - - √ √ 30-bus weighted metric SHADE-SF 
[21] √ - √ √ √ √ 30-bus weighted metric PPSOGSA 
[22] √ - √ √ √ - 30-bus, 118-bus weighted metric MMSA 
[23] √ √ √ √ √ - 30-bus, 57-bus weighted metric CPSOGSA 
[24] √ √ - - √ √ 30-bus, 57-bus, 118-bus weighted metric HMICA-SQP 
[25] √ √ - - √ √ 30-bus, 57-bus, 118-bus weighted metric DEEPSO 
[26] √ √ √ √ √ √ 30-bus weighted metric FDBAGDE 
[27] √ √ √ √ √ - 30-bus, 57-bus, 118-bus weighted metric COA 
[28] √ √ √ - √ √ 30-bus, 57-bus weighted metric BMO 
[29] √ √ √ - √ √ 30-bus weighted metric GWO 
[30] √ √ √ √ √ √ 30-bus weighted metric AFDB-SFS 
[31] - - √ √ √ √ 57-bus weighted metric MRUN 
[32] √ - √ √ √ - 30-bus MOEAs NSPSO 
[33] √ - √ √ √ - 30-bus, 300-bus MOEAs MOGWO 
[34] √ √ - - √ √ 30-bus MOEAs MOEA/D, SMODE 
[35] √ √ - - √ √ 30-bus MOEAs CMOPEO 
[36] √ - √ √ √ √ 30-bus MOEAs MOAGDE 
[37] √ √ √ √ √ √ 30-bus MOEAs ACNSDE 
[38] √ √ √ - √ √ 30-bus, 57-bus MOEAs MOSGA 
[39] √ √ - - √ - 30-bus MOEAs MOQILDE 
[40] √ √ √ √ √ √ 30-bus MOEAs MOPFA 
Present study √ √ √ √ √ √ 30-bus, 57-bus MOEAs AGE-MODE  
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based on the preferences of the decision maker. However, a few 
studies have been conducted on MOOPF-RESs using MOEAs [32–40]. 
Among the applications of MOEAs, only two studies [37] and [40] 
investigated MOOPF-RESs problems with more than three-objective 
functions owing to their complexity. However, they used only a 
small-scale 30-bus network. Thus, MOOPF problems with RES should 
be further encouraged because of their importance in the context of 
the greater penetration of RES in modern power grids.  

2. In multi-objective problems, the main goal of MOEAs is to generate a 
non-dominated set with good convergence and diversity. To achieve 
this goal, determining the geometry of the Pareto front is extremely 
important. The MOEAs used for MOOPF-RES problems in the liter-
ature were developed by implicitly assuming that the optimal front 
has a Euclidean geometry. However, the optimal front in multi- 
objective problems can be formed from a Euclidean, spherical, or 
hyperbolic hypersurface. This may have affected the diversity and 
convergence of the obtained solutions. Moreover, an increasing 
number of objectives significantly increases the complexity of the 
problem and requires more calculation time to define the optimal 
front. Therefore, a new robust method should be proposed to effi-
ciently address MOOPF problems that incorporate RES.  

3. Most published papers only studied MOOPF with RES on an adapted 
IEEE 30-bus network. The expansion of the problem to larger 
benchmark power grids has not yet been fully considered. This en-
courages studies to implement the MOOPF problem with RES to 
evaluate the effects of stochastic RESs on the optimal operational 
solutions for large-scale power systems. 

This study aims to circumvent these problems and fill these gaps by 
developing a new adaptive geometry-estimation-based multi-objective 
differential evolution (AGE-MODE) method, which is suitable for 
MOOPF in hybrid thermal-wind-solar power systems (MOOPF-TWS). 
The proposed algorithm is inspired by the method of estimating the 
shape of a generated front using an adaptive geometry estimation (AGE) 
approach [41]. Therefore, AGE-MODE can significantly enhance the 
convergence and diversity of the generated Pareto front, regardless of 
whether it generates a Euclidean, spherical, or hyperbolic hypersurface. 
The new method solves the MOOPF-TWS problem with four objectives: 
total generation costs, emissions, real power loss, and voltage deviation. 
The developed method is simulated on IEEE 30-bus and 57-bus networks 
with diverse optimization objectives. The other salient contributions of 
this study are as follows:  

● The MOOPF-TWS is formulated as a constrained multi-objective 
optimization problem in hybrid power systems in which thermal, 
wind, and solar PV power plants are scheduled in a coordinated 
manner. Four different objective functions are considered from 
economic, environmental, and technical perspectives. Weibull and 
lognormal PDFs are proposed to manage the uncertainty and inter-
mittent nature of wind speed and solar irradiance.  

● A new AGE-MODE is developed based on the framework of 
normalization, AGE, survival score calculation, and genetic opera-
tion of the DE method. AGE-MODE aims to provide the optimum 
Pareto front and proper trade-off for contradictory objective 
functions.  

● To evaluate the proposed AGE-MODE, various case studies with 
combinations of two, three, or four objectives are conducted on 
modified IEEE 30-bus and 57-bus systems connected to RES. Based 
on the comparisons, AGE-MODE outperforms the other algorithms in 
terms of the optimal solution and values of performance metrics in 
most case studies. 

The generation costs associated with thermal, wind, and solar sour-
ces are introduced in Section 2. The MOOPF-TWS problem is presented 
in Section 3. Section 4 presents the concepts of the proposed AGE-MODE 
and its application to the MOOPF-TWS. The simulation results are 

outlined in Section 5, followed by conclusions in Section 6. 

2. Mathematical models for generation costs 

2.1. Thermal power 

Thermal generators are operated using fossil fuels. The fuel cost is 
defined based on a quadratic correlation with the generated power, as 
follows [42]: 

CTP(PTP) =
∑NTP

k=1

(
ak + bkPTP,k + ckP2

TP,k

)
(1)  

where NTP is the total number of thermal power units, and ak, bk, and ck 
are the cost coefficients of the kth thermal power unit corresponding to 
the output power PTP,k. 

Considering valve-point effects is necessary to model the thermal 
generator cost function in a realistic and efficient manner. The valve- 
point effects can be determined as a sinusoidal function and added to 
the total generation costs of the thermal power units, as follows [42,43]: 

CTP(PTP) =
∑NTP

k=1

(
ak + bkPTP,k + ckP2

TP,k +

⃒
⃒
⃒dk × sin

(
ek ×

(
Pmin

TP,k − PTP,k

))⃒
⃒
⃒

)

(2)  

where Pmin
TP,k is the minimum output power associated with the kth ther-

mal power unit, and dk and ek are the coefficients representing the valve- 
point effects. 

2.2. Direct cost of wind and solar power 

In this study, it is assumed that wind and solar power plants are 
operated by private companies. According to power contract agree-
ments, the grid operator is responsible for paying for the wind power 
purchased from the wind farm operators [44]. 

The direct cost function for the wind power plant is modeled as 
follows [20,34]: 

Cw,i
(
Pws,i

)
= KDw,iPws,i (3)  

where Pws,i and KDw,i are the scheduled power and direct cost coefficients 
of the ith wind power plant, respectively. 

The direct cost function for the solar PV power plant can be deter-
mined using Eq. (4) [20,34]: 

Cs,j
(
Pss,j
)
= KDs,jPss,j (4)  

where Pss,j and KDs,j are the scheduled power and direct cost coefficients 
of the jth solar PV power plant, respectively. 

2.3. Cost of wind power uncertainty 

In view of the intermittent and uncertain nature of wind power 
plants, a possibility exists that they will not be able to generate sched-
uled power. If the actual wind power supplied by the wind power plant is 
less than the scheduled power, grid operators require reserve power 
sources to continuously supply power to consumers. The reserve cost for 
a wind power shortage should be paid for the reserve-generating units, 
which can be defined as follows [20,34]: 

CRw,i

(

Pws,i − Pwav,i

)

= KRw,i

∫ Pws,i

0

(
Pws,i − pw,i

)
fw
(
pw,i
)
dpw,i (5)  

where KRw,i, Pwav,i, and fw(pw,i) are the reserve cost coefficient, actual 
available power, and PDF pertaining to the ith wind power plant, 
respectively. 

If the wind power plant provides a larger amount of actual wind 
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power than the scheduled power, the surplus power may be unused, and 
the grid operator is liable for the penalty cost. The penalty cost associ-
ated with the wind power surplus can be defined as follows [20,34]: 

CPw,i

(

Pwav,i − Pws,i

)

= KPw,i

∫ Pwr,i

Pws,i

(
pw,i − Pws,i

)
fw
(
pw,i
)
dpw,i (6)  

where KPw,i and Pwr,i are the penalty cost coefficient and rated power of 
the ith wind power plant, respectively. 

2.4. Cost of solar power uncertainty 

Similar to wind power, the uncertain and intermittent power output 
of solar PV power plants also leads to overestimation and underesti-
mation costs. The reserve cost of a solar PV power plant can be expressed 
in the following equation [20,34]: 

CRs,j
(
Pss,j − Psav,j

)
= KRs,j × fs

(
Psav,j < Pss,j

)
×
[
Pss,j − E

(
Psav,j < Pss,j

)]
(7)  

where KRs,j and Psav,j are the reserve cost coefficient and actual available 
power of the jth solar PV power plant, respectively; E(Psav,j < Pss,j) is the 
expectation of solar PV power lower than scheduled power (Pss,j); and 
fs(Psav,j < Pss,j) is the likelihood of shortfall of solar PV power. 

The penalty cost associated with a solar PV power plant can be given 
by Eq. (8) [20,34]: 

CPs,j
(
Psav,j − Pss,j

)
= KPs,j × fs

(
Psav,j > Pss,j

)
×
[
E
(
Psav,j > Pss,j

)
− Pss,j

]
(8)  

where KPs,j is the penalty cost coefficient of the jth solar PV power plant, 
E(Psav,j > Pss,j) is the expectation of solar PV power exceeding Pss,j, and 
fs(Psav,j > Pss,j) is the likelihood of an excess of solar PV power. 

2.5. Stochastic wind and solar modeling 

2.5.1. Uncertain wind power 
The Weibull PDF can be applied to model wind speed distributions 

[20,45,46]. According to the Weibull PDF with a shape factor (β) and 
scale factor (α), the wind speed distribution can be modeled as follows 
[20,34]: 

fυ(υ) =
(

β
α

)(υ
α

)(β− 1)
e− (υ/α)β

; for 0 < υ < ∞ (9)  

where υ is the wind speed (m/s). 
Fig. 1 depicts the wind speed distribution for a typical wind power 

plant after running 8000 Monte-Carlo scenarios with the following 
Weibull parameters: α = 9 and β = 2. 

The actual available power related to the wind turbine can be 
formulated as follows [20,34]: 

pw(υ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 υ < υin and υ > υout

pwr

(
υ − υin

υr − υin

)

υin ≤ υ ≤ υr

pwr υr < υ ≤ υout

(10)  

where pwr, υin, υout, and υr are the rated power, cut-in speed, cut-out 
speed, and rated speed of a turbine, respectively. 

At certain wind speeds, the output power of the wind turbine is 
discrete, as indicated by Eq. (10). The wind power output is zero in the 
zones of wind speed (υ) lower than the cut-in speed (υin) and higher than 
the cut-out speed (υout). The wind turbine reaches the rated power in the 
zone between the rated speed (υr) and cut-out speed (υout). The wind 
power probabilities in these discrete zones can be calculated using the 
following equations [20,34]: 

fw(pw)
{

pw = 0
}
= 1 − exp

[
−
(υin

α

)β]
+ exp

[
−
(υout

α

)β]
(11)  

fw(pw)
{

pw = pwr

}
= exp

[
−
(υr

α

)β]
− exp

[
−
(υout

α

)β]
(12) 

In the zone between the cut-in speed (υin) and rated speed (υr), the 
power output of the wind turbine is continuous. For a continuous zone, 
the probability can be computed as follows [20,34]: 

fw(pw)=
β(υr − υin)

αβ ×pwr

[

υin +
pw

pwr

(

υr − υin

)]β− 1

exp

⎡

⎢
⎢
⎣ −

⎛

⎜
⎝

υin +
pw
pwr

(

υr − υin

)

α

⎞

⎟
⎠

β⎤

⎥
⎥
⎦

(13) 

Based on the probabilities for various wind speed zones, the right- 
hand side of the reserve cost in Eq. (5) can be expanded as follows [47]:   

Moreover, the right-hand side of the penalty cost in Eq. (6) can be 
expanded as follows [47]:   

Fig. 1. Wind speed distribution for a typical wind power plant (α = 9, β = 2).  

CRw,i

⎛

⎜
⎜
⎝Pws,i − Pwav,i

⎞

⎟
⎟
⎠ = KRw,i

∫ Pws,i

0

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝Pws,i − pw,i

⎞

⎟
⎟
⎠

β(υr − υin)

αβ × Pwr,i

[

υin +
pw,i

Pwr,i

(

υr − υin

)]β− 1

exp

⎡

⎢
⎢
⎣ −

⎛

⎜
⎝

υin +
pw,i
Pwr,i

(

υr − υin

)

α

⎞

⎟
⎠

β⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

dpw,i

+KRw,i
(
Pws,i − 0

)
× fw

(
pw,i
){

pw,i = 0
}

(14)   
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2.5.2. Uncertain solar power 
The solar irradiance distribution can be modeled correctly using a 

lognormal PDF [48]. Using the mean (μ) and standard deviation (σ) of 
the lognormal PDF, the probability of solar irradiance (Gs) can be 
expressed as follows [20,34]: 

fG(Gs) =
1

Gsσ
̅̅̅̅̅
2π

√ exp

{
− (ln Gs − μ)2

2σ2

}

; for Gs > 0 (16) 

Fig. 2 presents the solar irradiation distribution for a typical solar PV 
after running 8000 Monte-Carlo scenarios with the following lognormal 
parameters: µ = 6 and σ = 0.6. 

Energy conversion for solar PV is defined in the following equation 
[20,34]: 

Ps(Gs) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Psr

(
Gs

2

GstdRc

)

for 0 < Gs < Rc

Psr

(
Gs

Gstd

)

for Gs ≥ Rc

(17)  

where Rc is the irradiance point, Gstd is the solar irradiance in a standard 
environment, and Psr is the rated power of the solar PV. 

The maximum penetration of solar PV into the system must be cap-
ped at the rated power of solar PV as follows [45]: 

Ps ≤ Psr (18) 

The reserve cost in Eq. (7) can be expanded as follows [20,34]: 

CRs

(

Pss − Psav

)

= KRs

∑N−

n=1
[Pss − Psn− ] × fsn− (19)  

where Psn– is the available power that is lower than the scheduled power 
Pss, fsn– is the proportionate occurrence frequency of Psn–, and N– is the 
number of pairs (Psn–, fsn–) created for the PDF. 

The penalty cost in Eq. (8) can be expanded as follows [20,34]: 

CPs

(

Psav − Pss

)

= KPs

∑N+

n=1
[Psn+ − Pss] × fsn+ (20)  

where Psn+ is the available power that is higher than the scheduled 
power, fsn+ is the proportionate occurrence frequency of Psn+, and N+ is 
the number of pairs (Psn+, fsn+) created for the PDF. For simplicity, the 
suffix ’j’ in Eqs. (7) and (8) are not included to represent a single solar 
power plant. 

3. Multi-objective optimal power flow of thermal-wind-solar 
power system (MOOPF-TWS) 

In the MOOPF-TWS problem, the goal is to determine a set of control 
variables to optimize certain objective functions while satisfying the 
constraints related to equality and inequality [11,38]: 

Minimize f (u, x) = [f1(u, x), f2(u, x),…, fM(u, x)] (21)  

s.t. h(u, x) = 0 (22)  

g(u, x) ≤ 0 (23)  

where fM is the Mth objective; vector u is the control variables; vector x is 
the state variables; h(u,x) and g(u,x) are the sets of constraints for 
equality and inequality, respectively. 

3.1. Objective function of optimization 

3.1.1. Total generation costs 
The total generation costs include the thermal power cost and the 

direct, penalty, and reserve costs involved in the wind and solar power 
sources, which can be expressed as follows [20]: 

F1=CTP(PTP)+
∑NWP

i=1

[
Cw,i
(
Pws,i

)
+CRw,i

(
Pws,i − Pwav,i

)
+CPw,i

(

Pwav,i − Pws,i

)]

+
∑NSP

j=1

[
Cs,j
(
Pss,j
)
+CRs,j

(
Pss,j − Psav,j

)
+CPs,j

(

Psav,j − Pss,j

)]

(24)  

where NWP and NSP are the total numbers of wind and solar PV power 
plants, respectively. 

3.1.2. Real power loss 
Transmission systems inevitably suffer from power losses owing to 

the inherent resistance of the lines, which can be calculated as follows 
[4]: 

F2 =
∑NL

n=1
Gn(ij)

[
V2

i +V2
j − 2ViVj cos δij

]
(25)  

where Gn(ij) is the transfer conductance of the nth branch connecting the 
ith bus and jth bus; Vi and Vj are the voltage magnitudes at the ith bus and 
jth bus, respectively; δij is the difference in voltage angles between the ith 

bus and jth bus; and NL is the number of transmission lines. 

Fig. 2. Solar irradiation distribution for a typical solar PV (µ = 6, σ = 0.6).  

CPw,i

⎛

⎜
⎜
⎝Pwav,i − Pws,i

⎞

⎟
⎟
⎠ = KPw,i

∫ Pwr,i

Pws,i

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝pw,i − Pws,i

⎞

⎟
⎟
⎠

β(υr − υin)

αβ × Pwr,i

[

υin +
pw,i

Pwr,i

(

υr − υin

)]β− 1

exp

⎡

⎢
⎢
⎣ −

⎛

⎜
⎝

υin +
pw,i
Pwr,i

(

υr − υin

)

α

⎞

⎟
⎠

β⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

dpw,i

+KPw,i
(
Pwr,i − Pws,i

)
× fw

(
pw,i
){

pw,i = Pwr,i
}

(15)   
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3.1.3. Emissions 
Power generated from thermal sources releases pollutants into the 

atmosphere. The overall emissions of harmful gases from fossil fuel 
thermal power plants are expressed as follows [42,49]: 

F3 =
∑NTP

k=1

[(
αk + βkPTP,k + γkP2

TP,k

)
+ωke(μkPTP,k)

]
(26)  

where αk, βk, γk, ωk, and μk are coefficients of emission of the kth thermal 
power unit. 

3.1.4. Voltage deviation 
As an indicator of voltage quality in power systems, voltage devia-

tion can be calculated as follows [4,43]: 

F4 =
∑ND

i=1

⃒
⃒VL,i − 1

⃒
⃒ (27)  

where VL,i is the voltage magnitude at the ith load bus, and ND is the 
number of load buses. 

3.2. Control variables 

The vector u containing control variables is listed as follows:  

where PTP is the real power generation of the thermal power unit, except 
for the reference bus; Pws is the real power generation of the wind power 
plant; Pss is the real power generation of the solar PV power plant; VG is 
the generation bus voltage magnitude; T is the tap setting of the trans-
former; QC is the shunt VAR compensation; NG, NT, and NC are the 
number of generation buses, the number of regulating transformers, and 
the number of VAR compensators, respectively. 

3.3. State variables 

The vector x comprising state variables can be listed as follows: 

x =
[
PTP,1,QG,1,…,QG,NG , SL,1,…, SL,NL ,VL,1,…,VL,ND

]T (29)  

where PTP,1 is the real power generation of the reference bus, QG is the 
reactive power generation of the generation buses, SL is the transmission 
line loading, and VL is the load bus voltage magnitude. 

3.4. Technical constraints 

3.4.1. Equality constraints 
The equality constraints are typically determined by functions that 

describe the real and reactive power balances at each bus using the 
following equations: 

PG,i − PD,i − Vi

∑NB

j=1
Vj
[
Gij cos

(
δij
)
+ Bij sin

(
δij
)]

= 0; i = 1, .,NB (30)  

QG,i − QD,i − Vi

∑NB

j=1
Vj
[
Gij sin

(
δij
)
− Bij cos

(
δij
)]

= 0; i = 1, .,NB (31)  

where NB is the total number of buses; Gij and Bij are the transfer 
conductance and susceptance between the ith bus and jth bus, respec-
tively; PG,i and QG,i are the real and reactive power generations from 

power sources (thermal, wind, and solar), respectively. The real and 
reactive power demands at the ith load bus are denoted by PD,i and QD,i, 
respectively. 

3.4.2. Inequality constraints 

3.4.2.1. Generator constraints. The real and reactive powers of the 
thermal, wind, and solar PV power plants, and generation bus voltage 
magnitudes must be bound by the lower and upper limits, as follows: 

Pmin
TP,i ≤ PTP,i ≤ Pmax

TP,i; i = 1, .,NTP (32)  

Pmin
ws,i ≤ Pws,i ≤ Pmax

ws,i ; i = 1, .,NWP (33)  

Pmin
ss,i ≤ Pss,i ≤ Pmax

ss,i ; i = 1, .,NSP (34)  

Qmin
G,i ≤ QG,i ≤ Qmax

G,i ; i = 1, .,NG (35)  

Vmin
G,i ≤ VG,i ≤ Vmax

G,i ; i = 1, .,NG (36)  

3.4.2.2. Transformer constraints. The tap settings of the transformers 
must be within lower and upper limits, as follows: 

Tmin
i ≤ Ti ≤ Tmax

i ; i = 1, .,NT (37)  

3.4.2.3. Shunt VAR compensator constraints. The shunt compensators 
must be limited to the following lower and upper boundaries: 

Qmin
C,i ≤ QC,i ≤ Qmax

C,i ; i = 1, .,NC (38)  

3.4.2.4. Security constraints. The complex power flow in transmission 
lines and load bus voltage magnitudes should be satisfied by physical 
limitations, as follows: 

SL,i ≤ Smax
L,i ; i = 1, .,NL (39)  

Vmin
L,i ≤ VL,i ≤ Vmax

L,i ; i = 1, .,ND (40)  

4. AGE-MODE 

In a multi-objective optimization problem, the main goal of MOEAs 
is to generate a set of non-dominated solutions that approximate the 
optimal Pareto front. The generated set of solutions should converge 

Fig. 3. Overall framework of the AGE-MODE algorithm.  

u =
[
PTP,2,…,PTP,NTP ,Pws,1,…,Pws,NWP ,Pss,1,…,Pss,NSP , VG,1,…,VG,NG ,T1,…, TNT ,QC,1,…,QC,NC

]T (28)   
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well and diversify over the optimal front. The convergence and diversity 
significantly depend on the shape of the Pareto front which can be 
formed from a Euclidean, spherical, or hyperbolic hypersurface [41]. 
Precise estimation of the Pareto front shape can improve the perfor-
mance of an algorithm in solving multi-objective problems. To this end, 
a new and effective multi-objective method called AGE-MODE is 
developed in this study by integrating the genetic operation of the DE 
algorithm with several frameworks, including normalization, AGE, and 
survival score calculation. The AGE approach [41] is used to estimate 
the geometry of the optimal front. Using the estimated geometry, a set of 
solutions is selected for the next generation based on their convergence 
and diversity using the survival score. The overall framework of 
AGE-MODE is shown in Fig. 3. Brief descriptions of the DE algorithm and 
the proposed AGE-MODE algorithm are provided in the following 
sections. 

4.1. Differential evolution (DE) 

DE is one of the most popular population-based optimization algo-
rithms [50]. The control parameters that affect the DE performance 
include the population size, scale factor for the mutation strategy, and 
crossover rate for the crossover strategy. After initialization, the DE al-
gorithm iteratively performs the mutation, crossover, and selection 
steps. 

4.1.1. Initialization 
DE initializes a population of candidate solutions with randomly 

assigned values, as follows: 

x(0)i.j = xmin
j + randi,j

[
0, 1
](

xmax
j − xmin

j

)
; i = 1, 2,…,NP, j = 1, 2,…,D

(41)  

where x(0)
i.j is the jth component of the ith solution vector of the population 

at initialization; xmin
j and xmax

j are the lower and upper bounds of the jth 

dimension of the search space, respectively; randi,j[0,1] is a uniform 
random variable ranging from zero to one; D is the dimension of the 
solution vector; and NP is the population size. 

4.1.2. Mutation 
At each Gth generation, DE performs mutations by creating a mutant 

vector for each population member as follows [50]: 

v(G)

i = x(G)

r1 +F⋅
(
x(G)

r2 − x(G)

r3
)

(42)  

where indices r1, r2, and r3 are mutually exclusive integers chosen 
randomly from the population range, and a positive mutation factor (F) 
is used to regulate the amplitude of the differential variation. 

4.1.3. Crossover 
During the crossover, the trial vector u(G)

i = (u(G)
i,1 , u(G)

i,2 ,…, u(G)
i,D ) is 

generated by mixing the elements of the mutant vector v(G)i with the 
target vector x(G)

i to increase the diversity of the perturbed parameter 
vectors. This scheme is based on a binomial crossover and applies to 
each variable via an adapted crossover rate, as follows [50]: 

u(G)

i,j =

⎧
⎨

⎩

v(G)

i,j if j = jrand or randi,j[0, 1] ≤ CR(G)

i

x(G)

i,j otherwise
(43)  

where jrand is an integer selected at random from one to D, and CR is the 
crossover rate. 

The value of CR is adaptively changed over iterations, as follows 
[50]: 

CR(G) = e−
G

Gmax (44)  

where Gmax is the maximum number of iterations. 

4.1.4. Selection 
The objective values of the trial vectors are computed and compared 

with those of the target vectors. Trial vectors with better objective 
values replace the target vectors in the population. Selection is per-
formed as follows [50]: 

x(G+1)
i =

⎧
⎨

⎩

u(G)

i if f
(

u(G)

i

)
< f
(

x(G)

i

)

x(G)

i otherwise
(45)  

where f is the objective function. 

4.2. Normalization 

In this study, fast non-dominated sorting of NSGA-II [51] is used to 
group a population into subsequent non-dominated fronts. Based on the 
normalization strategy of NSGA-III, the objective functions of the solu-
tion in the first non-dominated front (F1) can be normalized as follows 
[52,53]: 

f n
i (S) =

f′i(S)
ai

=
fi(S) − zmin

i

ai
; ∀S ∈ F1, i = 1, 2,…,M (46)  

where M is the number of objectives, fi(S) is the ith objective function of 
solution S, and zmin

i is the minimum value of the ith objective function for 
all solutions in F1. The numerator denotes the transformed objective by 
subtracting each objective fi using zmin

i , enabling the ideal point to be 
equal to the origin of the axes. The term ai denotes the intercept of the 
objective axis fi with an M-dimensional hyperplane [52,53]. 

Based on the values of zmin
i and ai computed for the first front, the 

solutions in all other fronts Fk (with k > 1) can be normalized. However, 
the normalized objectives for front F1 have values between zero and one, 
those for the other fronts may have values exceeding one. 

4.3. Adaptive geometry estimation (AGE) 

Generally, the norm of a vector v = (v1,…, vM) can be defined using Lp 
norm (or p-norm) in the M-dimensional space RM as follows [54]: 

‖v‖p = (vp
1 + … + vp

M)
1/p (47) 

The distance measurements between points A1 and A2 in RM differ 
based on the different values of p. The shape of the unit hypersurface 
related to the Lp norm is determined by the value of p [54]. To this end, 
an effective process called AGE is proposed for defining the shape of the 
non-dominated front [41]. 

In the proposed AGE, the central point in front F1 can be used to 
approximate the value of p. Therefore, the corresponding Lp exponential 
equation can be estimated precisely. In the normalized objective space, 
the central point C represents the point with the smallest perpendicular 
distance to the vector β

→, which can be expressed as follows [41]: 

C = arg min
f n(S)

dist⊥
(

f n(S), β
→
)

; ∀S ∈ F1 (48)  

where the vector β
→ is bounded by the ideal point (Zmin = ( 0→)) and the 

nadir point (Zmax = ( 1→)). 
The value of the exponent p can be approximated as follows [41]: 

p =
log(M)

log(M) − log
(
∑M

i=1
Ci

) (49)  

where Ci is the ith coordinate of the central point C in the normalized 
objective space. 
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4.4. Survival score 

The convergence and diversity of the first front F1 can be calculated 
by employing the geometry (Lp norm) of front F1 (defined in Section 
4.3). For each non-dominated solution S, the convergence score can be 
defined as the distance between its objective vector and the ideal point 
based on the Lp norm, which can be expressed as follows [41]: 

convergence(S) =
⃦
⃦f n(S) − Zmin

⃦
⃦

p = ‖f n(S)‖p (50) 

From Eq. (50), a solution S with convergence(S) < 1 prevails in the 
parts of the unit hypersurface involved in the computed Lp norm. By 
contrast, solution S with convergence(S) > 1 is located farther distant 
from the ideal point than the other points in the unit hypersurface 
involved in Lp. The solution S with convergence(S) = 1 is located on the 
unit hypersurface of Lp. 

For solutions S ∈ F1, the diversity score can be calculated as the 
minimum distance of S from all other solutions in F1 using the estimated 
p-norm [41]: 

diversity
(

S,F1

)

= min
T∕=S∈F1

‖f n(S) − f (T)‖p (51) 

With defined convergence and diversity scores, the survival score of 
each solution S ∈ F1 is determined by the following equation [41]: 

score(S) =
diversity(S,F1)

convergence(S)
(52)  

4.5. Proposed AGE-MODE 

The proposed AGE-MODE method is outlined in Algorithm 1. The 
optimization process begins by randomly creating an initial population 
P with Np solutions in the search space. New solutions for the offspring 
population Q are created based on the genetic operation of the DE al-
gorithm. A new population R with size 2 × Np is formed by combining 
the current population P and offspring population Q. Population R is 
then sorted into several non-dominated fronts (F1, F2, …, Fk) using fast 
non-dominated sorting. In the following step, a procedure similar to that 
in NSGA-III is used to normalize all fronts by scaling the objective 

values. After normalization, the solutions on all fronts are assigned their 
corresponding survival scores, which include convergence and diversity 
scores based on the Lp norm. In each generation, the exponent p of the Lp 
norm is approximated based on the geometry of the first front, as pre-
sented in Section 4.3. Therefore, the Lp norm can be adapted iteratively. 
Thus, the geometric estimation (i.e., the estimated value of p) of the 
Pareto front is more accurate if the first front is closer to the optimal 
front. Finally, a new population (with size Np) is selected for the next 
generation, wherein the solutions in the first front (F1) are chosen first. 
The selection continues with the next fronts (F2, F3, …, Fk) until the new 
population contains Np solutions. For the last front (Fk) to which its 
solutions can be added, the remaining solutions from Fk are selected in 
descending order of survival scores. The algorithm loop is executed until 
the stop criterion is satisfied. 

Algorithm 1. AGE-MODE. 

4.6. Application of the AGE-MODE for the MOOPF-TWS problem 

The application procedures of the AGE-MODE for the MOOPF-TWS 
problem are presented in Fig. 4 and outlined as follows: 

4.6.1. Input 
(i) MOOPF-TWS problem under study (power system data, di-

mensions of the problem, boundaries for control variables, objective 
functions to be considered, and set of equality and inequality con-
straints); (ii) AGE-MODE parameters (population size NP, maximum it-
erations Gmax, and mutation factor F). 

4.6.2. Output 
Final Pareto optimal set and compromise solution. 

4.6.3. Initialization 
Randomly initialize a population of NP candidate solutions, as shown 

in Eq. (41). Perform power flow computation based on the Matpower 
toolbox [55] to compute the fitness function value for all candidate 
solutions in the initial population. The inequality constraints are 
imposed on a fitness function as quadratic penalty terms as follows: 
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FFm =Fm+λP

(
PG,1 − Plim

G,1

)2
+λQ

∑NG

k=1

(
QG,k − Qlim

G,k

)2
+λS

∑NL

k=1

(
SL,k − Smax

L,k

)2

+λV

∑ND

k=1

(
VL,k − V lim

L,k

)2

(53)  

where λP, λQ, λS, and λV are penalty factors, Fm is the mth objective value, 
and xlim is the limit value of the dependent variable x, which is obtained 
as follows: 

xlim =

{
xmax; if x > xmax
xmin; if x < xmin

(54) 

Algorithm loop: 
Step 1: Set G = 1. 
Step 2: Generate offspring population Q based on the genetic oper-

ation of the DE algorithm. 
Step 3: Combine population P and offspring population Q into a 

combined population R. Group the combined population R into several 
non-dominated fronts (F1, F2, …, Fk) using the fast non-dominated 
sorting approach of NSGA-II. 

Step 4: Apply the normalization approach of NSGA-III to normalize 
all fronts in the combined population R. 

Step 5: Calculate the exponent p of the Lp norm on the geometry of 
the first front. 

Step 6: Calculate the survival score using the predefined Lp norm for 
the solutions on all fronts. 

Step 7: Select the best NP solutions from the combined population R 
for the new population based on their non-dominated ranks and survival 
scores. 

Step 8: Set G = G + 1. If G ≤ Gmax, return to Step 2; otherwise, stop 
the algorithm. 

Step 9: The compromise solution is selected from the Pareto optimal 
set based on a fuzzy decision-making approach. The membership func-
tion of an objective is computed as follows [56]: 

μkm =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if Fkm ≤ min(Fm)

max(Fm) − Fkm

max(Fm) − min(Fm)
if min(Fm) ≤ Fkm ≤ max(Fm)

0 if Fkm ≥ max(Fm)

(55)  

where µkm and Fkm are the membership function and objective value of 
the mth objective for the kth solution, respectively; and max(Fm) and min 
(Fm) are the extreme values for the mth objective. The normalized 
membership function for the kth solution is determined using Eq. (56): 

μk =

∑M

m=1
μkm

∑Nd

k=1

∑M

m=1
μkm

(56)  

where Nd is the number of Pareto optimal solutions. The solution with 
the highest µk value is defined as the compromise solution. 

5. Simulation results 

This study applies the proposed AGE-MODE method to resolve the 
MOOPF-TWS problem. Figs. 5 and 6 depict graphical diagrams of the 
modified IEEE 30-bus and 57-bus systems, respectively. For the modified 
IEEE 30-bus system shown in Fig. 5, three thermal power plants are 
located on buses 1, 2, and 8, two wind power plants are connected to 
buses 5 and 11, and one solar PV power plant is integrated at bus 13 
[20]. As shown in Fig. 6, for the modified 57-bus system, four thermal 
power plants are located on buses 1, 3, 8, and 12, and two wind power 
plants are integrated into buses 6 and 9 along with a solar PV power 
plant on bus 2 [38]. The rated output power of the wind turbine is 
3 MW. The other relevant system characteristics are referred from [57]. 
Appendix A provides the cost and emission coefficients associated with 
thermal power plants. The wind and solar outputs are the uncertainty 
variables, and the relevant parameters for modeling their respective 
uncertainties are listed in Tables 2 and 3. For an efficient and econom-
ical system operation, the MOOPF-TWS problem includes 24 control 

Fig. 4. Flowchart for implementation of AGE-MODE algorithm for the MOOPF- 
TWS problem. 
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variables for a 30-bus system and 33 control variables for a 57-bus 
system, as defined in Eq. (28). 

Different case studies are investigated for modified IEEE 30-bus and 
57-bus systems. The details of each case study are presented in Table 4, 
wherein four objectives are considered in combination with two-, three-, 
or four-objective optimization problems. Cases 4 and 8 are considered 
the most challenging cases, in which all four-objective functions are 
optimized simultaneously. 

All the simulations are performed using MATLAB 2020b. In this 
study, the AGE-MODE is performed with an adaptive crossover rate (in 
Eq. (44)) and a mutation probability of 0.5. Furthermore, the population 
size and maximum iterations of AGE-MODE related to each case study 
are referred from previous studies [11,34,37], as listed in Table 5. In 
addition, multi-objective differential evolution (MODE) and two 
recently developed multi-objective methods, namely, a 
knee-point-driven evolutionary algorithm (KnEA) [58] and reference 

Fig. 5. IEEE 30-bus system connected to RES.  

Fig. 6. IEEE 57-bus system connected to RES.  
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point dominance-based NSGA-II (RPD-NSGAII) [59], are reimplemented 
for similar problems with the same initial parameters to verify the 
performance of the proposed AGE-MODE. For each case, 30 Pareto 
fronts are qualitatively evaluated by estimating their hypervolume 

values, and the best Pareto front has the highest hypervolume value. 
The hypervolume metric is a well-established indicator for esti-

mating the diversity and convergence of a generated Pareto front in 
multi-objective problems. This metric is estimated as follows [60]: 

HV = ∪
|Ω|

S=1
vS (57)  

where vS is a hypercube for each solution S ∈ Ω created using a reference 
point [10]. 

To further validate the performance of the proposed algorithm, it is 
tested using the CEC2020 benchmark test functions. The comparative 
results between AGE-MODE and published results for the CEC2020 test 
problems are provided in Appendix B. 

5.1. IEEE 30-bus system 

For case studies related to the IEEE 30-bus system, Table 6 lists the 
optimum settings for all control variables, objective function values, and 
other related parameters for the compromise solutions. Tables 7 and 8 
provide comparisons between the proposed AGE-MODE and other 
MOEAs in terms of the compromise solution associated with Cases 1–4. 
The load bus voltage profiles in Cases 1–4 are depicted in Fig. 7, which is 
an important factor for the optimal operation of the power system. As 
shown in Fig. 7, the constraints on the load bus voltages are fully 
satisfied in all cases. Considering the voltage deviation objective, the 
voltage configuration of Case 4 is better than that of the other cases. As 
shown in Figs. 8–10, the Pareto fronts generated by AGE-MODE for 

Table 2 
IEEE 30-bus and 57-bus systems: PDF parameters and cost coefficients of wind 
power plant [20,34].  

Items IEEE 30-bus IEEE 57-bus 

Number of 
wind turbines 

25 20 50 40 

Rated power 
(MW) 

75 (bus 5) 60 (bus 11) 150 (bus 6) 120 (bus 9) 

Direct cost 
coefficient 
($/MW) 

1.6 1.75 16 17.5 

Resverve cost 
coefficient 
($/MW) 

3 3 30 30 

Penalty cost 
coefficient 
($/MW) 

1.5 1.5 15 15 

Weibull mean υ = 7.976 m/ 
s 

υ = 8.862 m/ 
s 

υ = 7.976 m/ 
s 

υ = 8.862 m/ 
s 

Weibull PDF 
parameters 

α = 9, β = 2 α = 10, β = 2 α = 9, β = 2 α = 10, β = 2  

Table 3 
IEEE 30-bus and 57-bus systems: PDF parameters and cost coefficients of solar 
PV power plant [20,34].  

Items IEEE 30-bus IEEE 57-bus 

Rated power (MW) 50 (bus 13) 80 (bus 2) 
Direct cost coefficient ($/MW) 1.6 16 
Reserve cost coefficient ($/MW) 3 30 
Penalty cost coefficient ($/MW) 1.5 15 
Lognormal mean G = 483 W/m2 G = 483 W/m2 
Lognormal PDF parameters µ = 6, σ = 0.6 µ = 6, σ = 0.6  

Table 4 
Details of considered objective functions for each case study in the MOOPF-TWS 
problem.  

Case Generation 
costs 

Emissions Real 
power loss 

Voltage 
deviation 

System 

Case 
1 

✔ ✔   IEEE 30-bus 
system 

Case 
2 

✔  ✔  

Case 
3 

✔ ✔ ✔  

Case 
4 

✔ ✔ ✔ ✔ 

Case 
5 

✔ ✔   IEEE 57-bus 
system 

Case 
6 

✔  ✔  

Case 
7 

✔ ✔ ✔  

Case 
8 

✔ ✔ ✔ ✔  

Table 5 
Parameter settings of AGE-MODE for solving MOOPF-TWS problem.  

Parameters Cases 1, 2, 3 Case 4 Cases 5, 6, 7 Case 8 

Population size  100  200  100  200 
Maximum iterations  300  600  500  1000  

Table 6 
Simulation results for Cases 1, 2, 3, and 4.  

Parameters Min Max Case 1 Case 2 Case 3 Case 4 

PTP2 (MW) 20 80  39.6562  20.9945  38.0771  37.8031 
Pws1 (MW) 0 75  48.3428  59.2240  65.3183  68.1471 
PTP3 (MW) 10 35  10  10.7693  22.7468  26.2153 
Pws2 (MW) 0 60  40.3315  43.4286  46.4863  47.6580 
Pss1 (MW) 0 50  40.2789  34.2933  40.7363  40.5389 
VG1 (p.u.) 0.95 1.1  1.0652  1.0679  1.0649  1.0253 
VG2 (p.u.) 0.95 1.1  1.0550  1.0537  1.0537  1.0145 
VG5 (p.u.) 0.95 1.1  1.0362  1.0383  1.0415  1.0073 
VG8 (p.u.) 0.95 1.1  1.0371  1.0386  1.0393  1.0024 
VG11 (p.u.) 0.95 1.1  1.0587  1.0764  1.0809  1.0508 
VG13 (p.u.) 0.95 1.1  1.0638  1.0528  1.0581  1.0043 
T11 (p.u.) 0.9 1.1  1.0137  1.0663  1.0501  1.0601 
T12 (p.u.) 0.9 1.1  0.9639  0.9  0.9319  0.9 
T15 (p.u.) 0.9 1.1  0.9990  0.9905  0.9903  0.9636 
T36 (p.u.) 0.9 1.1  0.9916  0.9742  0.9699  0.9651 
QC10 (MVar) 0 5  4.1690  1.7855  3.6306  1.9034 
QC12 (MVar) 0 5  0  5  0  2.4646 
QC15 (MVar) 0 5  5  1.6677  1.8866  2.1481 
QC17 (MVar) 0 5  3.7797  3.6482  3.2231  3.0304 
QC20 (MVar) 0 5  3.9551  4.6747  5  4.1995 
QC21 (MVar) 0 5  4.9725  5  4.9270  4.9986 
QC23 (MVar) 0 5  4.7945  4.0589  2.1824  5 
QC24 (MVar) 0 5  3.9419  5  4.8787  5 
QC29 (MVar) 0 5  2.9466  2.4799  0.9036  1.7534 
Generation 

costs ($/h) 
- -  807.1515  803.9183  846.7070  854.6103 

Emissions 
(ton/h) 

- -  0.4152  0.6930  0.1229  0.1105 

Real power 
loss (MW) 

- -  4.5369  4.3028  2.7585  2.7106 

Voltage 
deviation 
(p.u.) 

- -  0.7895  0.8955  0.8475  0.1315 

PTP1 (MW) 50 200  109.3275  118.9931  72.7936  65.7483 
QG1 (MVar) -20 150  -8.1422  -1.7503  3.4433  5.1880 
QG2 (MVar) -20 60  11.8356  5.5076  -0.1329  0.3326 
QG5 (MVar) -15 40  23.9276  22.4946  23.3406  28.1789 
QG8 (MVar) -30 35  26.3197  27.3360  22.2785  28.3498 
QG11 (MVar) -25 30  10.8836  23.2922  23.7823  26.7296 
QG13 (MVar) -20 25  11.5628  2.8940  8.5120  -4.2672  
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Cases 1–3 are the best ones with the best hypervolume values over 30 
runs in each case. It can be inferred from Figs. 8–10 that AGE-MODE can 
find Pareto fronts with high diversity that are also well distributed. For 
Case 4, the best Pareto front is shown as a parallel coordinate plot in 
Fig. 11. To this end, the values of the four objectives are normalized. 
According to Fig. 11, the non-dominated solutions found by AGE-MODE 
are distributed properly in the simultaneous optimization of the four- 
objective functions. 

In Case 1 of generation costs and emissions optimization, AGE-MODE 
obtains a compromise solution with 807.1515 $/h of generation costs 
and 0.4152 ton/h of emissions, which shows considerable superiority 
over the MODE, KnEA, and RPD-NSGAII in terms of compromise solu-
tion. Moreover, AGE-MODE has a better generation cost value than 
NSGA-II-SF [37] and ACNSDE-SF [37] methods in published studies, 
wherein NSGAII-SF [37] and ACNSDE-SF [37] obtain the lowest emis-
sion values but with significantly high generation costs. By contrast, 
SHADE-SF [20] obtains the lowest cost value with an extremely high 

emission value. SHADE-SF [20] uses the weighted metric method to 
convert a multi-objective function of costs and emissions into a 
single-objective function which may make its solution biased toward 
cost minimization. The compromise solution of AGE-MODE is selected 
based on the distribution of non-dominated solutions along the Pareto 
front. As shown in Fig. 8, the Pareto front generated by AGE-MODE has a 
uniform distribution. Therefore, AGE-MODE can effectively choose a 
better compromise solution for both cost and emission objectives. 

Table 7 
Comparisons of compromise solutions between AGE-MODE and other methods for Cases 1, 2, and 3.  

Algorithm Case 1 Case 2 Case 3 

Costs ($/h) Emissions (ton/h) Costs ($/h) Loss (MW) Costs ($/h) Emissions (ton/h) Loss (MW) 

AGE-MODE  807.1515  0.4152 803.9183 4.3028 846.7070 0.1229 2.7585 
MODE  807.9098  0.4242 805.7954 4.3672 850.0573 0.1185 2.9021 
KnEA  807.5084  0.4196 804.3478 4.3049 846.9837 0.1314 2.7751 
RPD-NSGAII  807.3938  0.4809 806.2267 4.4052 861.2237 0.0994 2.7657 
NSGAII-SF [37]  856.95  0.101 - - 853.54 0.1181 2.8492 
ACNSDE-SF [37]  843  0.123 - - 827.33 0.1965 4.1918 
SHADE-SF [20]  792.516  0.891 - - - - -  

Table 8 
Comparison of compromise solutions between AGE-MODE and other methods 
for Case 4.  

Algorithm Costs 
($/h) 

Emissions 
(ton/h) 

Loss 
(MW) 

Voltage deviation 
(p.u.) 

AGE-MODE  854.6103  0.1105  2.7106  0.1315 
MODE  854.1541  0.1342  3.0709  0.1387 
KnEA  846.2292  0.1436  3.0912  0.1555 
RPD-NSGAII  810.7787  0.4796  4.3518  0.2360 
NSGAII-SF  

[37]  
845.32  0.4279  4.2069  0.3979 

ACNSDE-SF  
[37]  

837.46  0.1804  3.6984  0.4179  

Fig. 7. Load bus voltage profiles for compromise solutions for Cases 1–4.  

Fig. 8. Pareto front yielded by AGE-MODE for Case 1.  
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Because of the simultaneous optimization of generation costs and power 
loss, the compromise solution achieved from AGE-MODE is 803.9183 
$/h and 4.3028 MW in Case 2. Thus, the AGE-MODE solution out-
performs MODE (805.7954 $/h and 4.3672 MW), KnEA (804.3478 $/h 
and 4.3049 MW), and RPD-NSGAII (806.2267 $/h and 4.4052 MW). 

A few studies have been conducted on the MOOPF-TWS with more 
than two objectives. In this regard, this study considers three- and four- 
objective functions for the MOOPF-TWS problem in Cases 3 and 4, 
respectively. For Case 3 with three-objective functions, AGE-MODE can 
dominate KnEA over all three-objective values, as listed in Table 7. 
Moreover, AGE-MODE achieves lower generation costs and power loss 
than MODE and RPD-NSGAII. Compared to the published results, AGE- 
MODE is better than NSGAII-SF [37] and ACNSDE-SF [37] in terms of 
two of the three objectives. When four objectives are considered (Case 
4), the compromise solution of AGE-MODE outperforms MODE, KnEA, 
RPD-NSGAII, NSGAII-SF [37], and ACNSDE-SF [37] for three of the four 
objectives, as shown in Table 8. Specifically, the values of emission, 
power loss, and voltage deviation obtained by AGE-MODE are the lowest 
in this case. Consequently, AGE-MODE can achieve the most advanta-
geous solutions for Cases 1–4. 

5.2. IEEE 57-bus system 

The literature on the extension of the MOOPF-TWS problem to a 57- 
bus IEEE system is extremely limited. For Cases 5–8 related to the IEEE 
57-bus network, the optimal settings of the control variables, objective 
function values, and other related parameters for the compromise so-
lutions are listed in Table 9. Fig. 12 depicts voltage profiles for all cases 
with a permissible range [0.94 p.u.–1.06 p.u.]. In all cases, AGE-MODE 
finds solutions that validly satisfy the system constraints, including the 
reactive power outputs and load bus voltage, as expressed in the data 
obtained in Table 9 and Fig. 12. The best Pareto fronts generated by the 
proposed AGE-MODE are shown in Figs. 13–15. Figs. 13–15 show that 
AGE-MODE can obtain solutions that distribute fairly well and uni-
formly spread over the entire Pareto optimal region. As shown in Fig. 16, 
the parallel coordinate plot for Case 8 shows a reasonable distribution of 
the non-dominated solutions. 

Comparisons of the compromise solutions between the proposed 
AGE-MODE and other MOEAs associated with Cases 5–8 are listed in 
Tables 10–11. In Case 5, the compromise solution obtained by AGE- 
MODE provides generation costs of 39569.94 $/h and emissions of 
1.0552 ton/h, which is better than MODE (39611.65 $/h and 1.0773 
ton/h) and KnEA (39583.73 $/h and 1.0593 ton/h). Furthermore, AGE- 
MODE achieves lower emissions at a higher generation cost than RPD- 
NSGA. Similarly, with a compromise solution of 39390.05 $/h and 
10.9636 MW in Case 6, AGE-MODE dominates MODE and KnEA in 
terms of generation costs and power loss. 

In the three-objective optimization in Case 7, AGE-MODE dominates 
all others on all objective functions. In addition, the solution of AGE- 
MODE is 40148.14 $/h, 1.0572 ton/h, and 11.0907 MW, which is 
considerably lower than those of MODE (40227.87 $/h, 1.1439 ton/h, 
and 11.8509 MW), KnEA (40220.11$/h, 1.0669 ton/h, and 
11.2597 MW), and RPD-NSGAII (40982.58$/h, 1.0706 ton/h, and 
12.5566 MW). In Case 8, with four-objective optimization, the solution 
yielded by AGE-MODE outperforms the solution yielded by MODE and 
RPD-NSGAII in all four objectives, and the solution yielded by KnEA in 
three of the four objectives. These comparisons show that the developed 
AGE-MODE has better convergence and diversity abilities than other 
approaches. The superior performance of AGE-MODE is more evident in 
complex cases with three- and four-objective optimizations. 

5.3. Hypervolume metric analysis 

In this section, the developed AGE-MODE is compared with other 
methods in terms of a hypervolume metric to comprehensively evaluate 
its effectiveness. The hypervolume metric is a robust indicator for 

Fig. 9. Pareto front yielded by AGE-MODE for Case 2.  

Fig. 10. Pareto front yielded by AGE-MODE for Case 3.  

Fig. 11. Parallel coordinates plot for Pareto front yielded by AGE-MODE for 
Case 4. 
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Table 9 
Simulation results for Cases 5, 6, 7, and 8.  

Parameters Min Max Case 5 Case 6 Case 7 Case 8 

Pss1 (MW) 0 80  80  75.2123  78.8544  79.8137 
PTP2 (MW) 40 140  68.9986  53.6034  83.6241  70.2698 
Pws1 (MW) 0 150  150  110.0286  147.4609  149.8842 
PTP3 (MW) 100 550  348.7883  352.2710  293.0464  294.8708 
Pws2 (MW) 0 120  120  112.4568  119.8788  120 
PTP4 (MW) 100 410  330.1518  410  389.6982  398.8717 
VG1 (p.u.) 0.95 1.1  1.0568  1.0573  1.0532  1.0182 
VG2 (p.u.) 0.95 1.1  1.0533  1.0519  1.0482  1.0100 
VG3 (p.u.) 0.95 1.1  1.0542  1.0494  1.0474  1.0081 
VG6 (p.u.) 0.95 1.1  1.0627  1.0564  1.0618  0.9993 
VG8 (p.u.) 0.95 1.1  1.0634  1.0617  1.0604  1.0167 
VG9 (p.u.) 0.95 1.1  1.0474  1.0484  1.0477  1.0121 
VG12 (p.u.) 0.95 1.1  1.0425  1.0439  1.0458  1.0198 
T19 (p.u.) 0.9 1.1  1.0183  0.9708  1.0046  0.9814 
T20 (p.u.) 0.9 1.1  1.0337  1.0188  1.0432  1.0646 
T31 (p.u.) 0.9 1.1  1.0774  1.0015  1.0351  0.9696 
T35 (p.u.) 0.9 1.1  0.9938  0.9446  1.0814  1.0445 
T36 (p.u.) 0.9 1.1  1.0232  1.0417  0.9  1.0895 
T37 (p.u.) 0.9 1.1  1.0276  1.0270  0.9991  0.9942 
T41 (p.u.) 0.9 1.1  0.9963  0.9941  0.9973  0.9869 
T46 (p.u.) 0.9 1.1  0.9580  0.9419  0.9287  0.9176 
T54 (p.u.) 0.9 1.1  0.9172  0.9089  0.9718  0.9 
T58 (p.u.) 0.9 1.1  0.9767  0.9715  0.9817  0.9431 
T59 (p.u.) 0.9 1.1  0.9682  0.9654  0.9871  0.9571 
T65 (p.u.) 0.9 1.1  0.9972  0.9809  1.0116  1.0038 
T66 (p.u.) 0.9 1.1  0.9460  0.9388  0.9592  0.9 
T71 (p.u.) 0.9 1.1  0.9894  0.9757  0.9830  0.9584 
T73 (p.u.) 0.9 1.1  0.9810  0.9862  1.0444  0.9936 
T76 (p.u.) 0.9 1.1  0.9767  0.9678  0.9223  0.9091 
T80 (p.u.) 0.9 1.1  1.0093  0.9866  0.9998  0.9786 
QC18 (MVar) 0 20  7.0316  9.0650  5.7046  18.4230 
QC25 (MVar) 0 20  12.5325  10.9718  12.9038  20 
QC53 (MVar) 0 20  11.8358  12.6392  14.2415  19.2856 
Generation costs ($/h) - -  39569.94  39390.05  40148.14  40001.76 
Emissions (ton/h) - -  1.0552  1.3008  1.0572  1.0925 
Real power loss (MW) - -  13.8468  10.9636  11.0907  12.4100 
Voltage deviation (p.u.) - -  1.3010  1.5075  1.2339  0.6543 
PTP1 (MW) 0 576  166.7080  148.1916  149.3278  149.4998 
QG1 (MVar) -140 200  42.6725  52.0374  46.1247  53.7541 
QG2 (MVar) -30 40  38.3238  36.5571  35.2782  26.3478 
QG3 (MVar) -10 60  44.4934  35.0535  26.1958  35.2576 
QG6 (MVar) -60 75  -2.1373  -2.3417  6.3088  -44.2756 
QG8 (MVar) -140 200  29.2202  26.7066  26.4027  25.0813 
QG9 (MVar) -50 60  29.3442  38.6980  33.2786  42.4549 
QG12 (MVar) -150 155  55.7605  37.9556  53.4254  79.3861  

Fig. 12. Load bus voltage profiles for compromise solutions for Cases 5–8.  
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estimating the diversity and convergence of multi-objective algorithms. 
An algorithm with a high hypervolume value has higher diversity and 
convergence performance [10]. Table 12 presents hypervolume com-
parisons between AGE-MODE and the other methods for all case studies. 
The best results for the hypervolume indicators are highlighted in 
Table 12. Moreover, a nonparametric Wilcoxon signed-rank test is used 
to statistically compare the proposed algorithm with other algorithms. 
As part of the statistical analysis, R+ represents the sum of the rankings 
of the runs where the proposed AGE-MODE outperforms the compared 
algorithm, whereas R− represents the sum of the rankings for the 
opposite case. Wilcoxon signed-rank test is performed at a significance 
level of 5%. The p-value represents the significance level of the results of 
the statistical hypothesis test. The symbols "+ " and "–" are used to 
indicate whether the proposed algorithm is significantly superior or 
inferior to other methods. 

As listed in Table 12, AGE-MODE achieves the best statistical results 
for the hypervolume indicator in all cases. The superiority of AGE-MODE 
is significant for cases with more than two objective functions (Cases 3, 
4, 7, and 8). This is because of the significant differences between the 
hypervolume values of AGE-MODE and those of the other optimizers. 
Based on results from the Wilcoxon Signed Ranks test, a p-value less than 
0.05 and the "+ " sign for all case studies indicate that AGE-MODE is 
significantly better than MODE, KnEA, and RPD-NSGAII. This proves 
that AGE-MODE outperforms the other methods in providing superior 
convergence and diversity for the MOOPF-TWS problem. 

6. Conclusion 

In this study, a robust multi-objective method, AGE-MODE, was 
proposed to determine the Pareto optimal solutions of a MOOPF 
framework integrating thermal, wind, and solar PV energy sources in a 
hybrid power system (MOOPF-TWS). This study has become increas-
ingly relevant as it considers RES in light of current trends in the energy 
industry and environmental regulations. A new AGE-MODE was devel-
oped by combining the genetic operation of the DE method with 
normalization, AGE, and survival score calculation. AGE-MODE em-
ploys an AGE approach to approximate the geometry of the generated 
Pareto front instead of relying on assumptions such as other MOEAs. 
Survival scores were also applied to rank and select solutions for the next 
generation to strike a balance between convergence and diversity of the 
generated front. Hence, the proposed algorithm can significantly 
improve the convergence and diversity of the generated front regardless 
of whether it generates a Euclidean, spherical, or hyperbolic hypersur-
face. The MOOPF-TWS is defined as a constrained multi-objective 
optimization problem. Lognormal and Weibull PDFs were applied to 
model the uncertainties of the RESs. The total generation costs, emis-
sions, voltage deviation, and real power loss were considered in 

Fig. 13. Pareto front yielded by AGE-MODE for Case 5.  

Fig. 14. Pareto front yielded by AGE-MODE for Case 6.  

Fig. 15. Pareto front yielded by AGE-MODE for Case 7.  

Fig. 16. Parallel coordinates plot for Pareto front yielded by AGE-MODE for 
Case 8. 
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particular cases with combinations of two-, three-, or four-objective 
optimizations of modified 30-bus and 57-bus systems connected to the 
RES. 

Detailed analyses and comparisons of the Pareto fronts, compromise 
solutions, and hypervolume metrics between the developed AGE-MODE 
and other methods were performed. The results indicated that AGE- 
MODE outperformed KnEA and RPD-NSGAII in terms of solution qual-
ity, convergence, and diversity characteristics. The AGE-MODE obtained 
better compromise solutions than the other methods for most test cases. 
This was further verified through statistical comparisons and Wilcoxon 
signed-rank test results, wherein AGE-MODE significantly outperformed 
the other methods in terms of the hypervolume metric for all case 

studies. One highlight is that the superiority of AGE-MODE is more 
evident for complex cases with three- or four-objective functions. 
Furthermore, all system constraints are strictly satisfied, which em-
phasizes the effectiveness of AGE-MODE in finding feasible solutions. 
The high performance of AGE-MODE is owing to the efficient estimation 
of the shape of the optimal front for each specific case in the MOOPF- 
TWS problem. In summary, the proposed algorithm is suitable for 
solving the MOOPF-TWS framework, particularly for large-scale prob-
lems with more than two objective functions. The expansion of the 
MOOPF-TWS to consider battery storage systems or electric vehicle 
charging stations is also of significant interest. Moreover, the AGE- 
MODE is recommended as a solution method for multi-objective 

Table 10 
Comparisons of compromise solutions between AGE-MODE and other methods for Cases 5, 6, and 7.  

Algorithm Case 5 Case 6 Case 7 

Costs ($/h) Emissions (ton/h) Costs ($/h) Loss (MW) Costs ($/h) Emissions (ton/h) Loss (MW) 

AGE-MODE  39569.94  1.0552  39390.05  10.9636  40148.14  1.0572  11.0907 
MODE  39611.65  1.0773  39437.79  11.2650  40227.87  1.1439  11.8509 
KnEA  39583.73  1.0593  39394.65  11.4072  40220.12  1.0669  11.2598 
RPD-NSGAII  39094.46  1.3608  39141.34  12.3184  40982.58  1.0706  12.5566  

Table 11 
Comparison of compromise solutions between AGE-MODE and other methods for Case 8.  

Algorithm Costs ($/h) Emissions (ton/h) Loss (MW) Voltage deviation (p.u.) 

AGE-MODE  40001.76  1.0925  12.4100  0.6543 
MODE  40016.56  1.2336  12.9560  0.7760 
KnEA  40229.40  1.0944  11.3313  0.6607 
RPD-NSGAII  40029.70  1.2211  13.8714  1.1838  

Table 12 
Comparative study of hypervolume metric between AGE-MODE and other methods.  

Case study Algorithm HV Wilcoxon signed-rank test 

Average Std. R+ R– p-value Sig. 

Case 1 AGE-MODE  0.8418  0.0003 - - -  
MODE  0.8200  0.0038 465 0 1.73E-06 +

KnEA  0.7881  0.0477 465 0 1.73E-06 +

RPD-NSGAII  0.6989  0.0389 465 0 1.73E-06 +

Case 2 AGE-MODE  0.6452  0.0010 - - -  
MODE  0.5918  0.0061 465 0 1.73E-06 +

KnEA  0.5096  0.0507 465 0 1.73E-06 +

RPD-NSGAII  0.5578  0.0187 465 0 1.73E-06 +

Case 3 AGE-MODE  0.6101  0.0034 - - -  
MODE  0.5267  0.0125 465 0 1.73E-06 +

KnEA  0.5491  0.0316 465 0 1.73E-06 +

RPD-NSGAII  0.3862  0.0509 465 0 1.73E-06 +

Case 4 AGE-MODE  0.6805  0.0036 - - -  
MODE  0.5971  0.0115 465 0 1.73E-06 +

KnEA  0.6349  0.0096 465 0 1.73E-06 +

RPD-NSGAII  0.3431  0.0747 465 0 1.73E-06 +

Case 5 AGE-MODE  0.8669  0.0032 - - -  
MODE  0.8141  0.0214 465 0 1.73E-06 +

KnEA  0.7219  0.0177 465 0 1.73E-06 +

RPD-NSGAII  0.4890  0.0974 465 0 1.73E-06 +

Case 6 AGE-MODE  0.8583  0.0192 - - -  
MODE  0.6510  0.0657 465 0 1.73E-06 +

KnEA  0.6065  0.0563 465 0 1.73E-06 +

RPD-NSGAII  0.6695  0.0791 465 0 1.73E-06 +

Case 7 AGE-MODE  0.6890  0.0155 - - -  
MODE  0.3631  0.0646 465 0 1.73E-06 +

KnEA  0.6037  0.0408 465 0 1.73E-06 +

RPD-NSGAII  0.1479  0.0555 465 0 1.73E-06 +

Case 8 AGE-MODE  0.7966  0.0046 - - -  
MODE  0.5750  0.0312 465 0 1.73E-06 +

KnEA  0.7570  0.0158 465 0 1.73E-06 +

RPD-NSGAII  0.1794  0.0436 465 0 1.73E-06 +
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Appendix A  

Table A1 
IEEE 30-bus and 57-bus systems: fuel cost and emissions constants for thermal generators [42,57].  

System Generator Bus a b c α β γ ω μ 

IEEE 30-bus TG1  1  0  2  0.00375  0.04091  − 0.05554  0.0649  0.0002  2.857 
TG2  2  0  1.75  0.0175  0.02543  − 0.06047  0.05638  0.0005  3.333 
TG8  8  0  3.25  0.00834  0.05326  − 0.0355  0.0338  0.002  2 

IEEE 57-bus TG1  1  0  20  0.0775795  0.04  − 0.05  0.06  0.00002  0.5 
TG3  3  0  20  0.25  0.04  − 0.05  0.04  0.00001  1 
TG8  8  0  20  0.0222222  0.05  − 0.05  0.045  0.00004  2 
TG12  12  0  20  0.0322581  0.06  − 0.05  0.05  0.00001  1.5  

Appendix B 

This section validates the performance of AGE-MODE using a set of well-established benchmark test problems. These benchmark test functions 
have diverse features obtained from the CEC2020 test suites [61]. Furthermore, the proposed AGE-MODE is compared with published results from 
other prominent methods employed in a previous study [36], namely MOAGDE, MO_Ring_PSO_SCD, OMNI, and NSGAII. Each test function is opti-
mized in 21 independent trials. For fair and reliable comparisons, the initial parameters of AGE-MODE are the same as the values in [36]. The 
comparisons are performed based on performance indicators, including the reciprocal of hypervolume (1/HV), reciprocal of Pareto sets proximity 
(1/PSP), inverted generational distance in decision space (IGDX), and inverted generational distance in objective space (IGDF). Lower values of these 
performance metrics indicate better performance of an algorithm. Further details on the benchmark test suite and performance metrics can be found in 
[61]. 

Table B1 lists the statistical results for performance metrics of AGE-MODE and other compared methods for 24 benchmark test problems. In 
Table B1, the best results on the mean and standard deviation are highlighted in bold. For 24 test problems and four performance indicators, each 
algorithm has 96 mean values. Therefore, the ratio of the best metric values obtained by each algorithm is determined and is also presented in 
Table B1. These ratios are considered as a measure to evaluate the performance of algorithms. From the results in Table B1, AGE-MODE obtains the 
best results for 42 out of 96 metric values (i.e., 43.75%). Moreover, AGE-MODE shows extremely competitive results in the rest of the test problems. 
Because benchmark problems have different search spaces and complexity, no single best algorithm for all problems exists [36]. This is also confirmed 
in the no-free-lunch theorems [62]. Therefore, the proposed AGE-MODE achieves good performance and outperforms other algorithms for most of the 
CEC 2020 benchmark test functions.  

Table B1 
Statistical results of AGE-MODE and other methods for CEC2020 test problems.  

Problem Metric AGE-MODE MOAGDE MO_Ring_PSO_SCD OMNI NSGAII 

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std 

MMF1 1/HV 1.1433 ± 0.0001 1.1444 ± 0.0002 1.1450 ± 0.0002 1.1441 ± 0.0008 1.1439 ± 0.0008 
1/PSP 0.0324 ± 0.0012 0.0278 ± 0.0014 0.0297 ± 0.0013 0.0491 ± 0.0077 0.0702 ± 0.0108 
IGDX 0.0324 ± 0.0012 0.0277 ± 0.0014 0.0296 ± 0.0013 0.0487 ± 0.0075 0.0693 ± 0.0097 
IGDF 0.0015 ± 0.0001 0.0018 ± 0.0001 0.0020 ± 0.0001 0.0017 ± 0.0003 0.0016 ± 0.0002 

MMF2 1/HV 1.1710 ± 0.0085 1.1664 ± 0.0040 1.1692 ± 0.0052 1.1636 ± 0.0344 1.1558 ± 0.0190 
1/PSP 0.0412 ± 0.0151 0.0197 ± 0.0035 0.0265 ± 0.0082 0.0668 ± 0.0504 0.0739 ± 0.0555 
IGDX 0.0412 ± 0.0151 0.0189 ± 0.0029 0.0255 ± 0.0080 0.0587 ± 0.0360 0.0685 ± 0.0471 
IGDF 0.0142 ± 0.0033 0.0099 ± 0.0008 0.0133 ± 0.0028 0.0165 ± 0.0297 0.0088 ± 0.0122 

MMF4 1/HV 1.8463 ± 0.0003 1.8524 ± 0.0021 1.8516 ± 0.0008 1.8475 ± 0.0002 1.8467 ± 0.0003 
1/PSP 0.0192 ± 0.0027 0.0160 ± 0.0014 0.0159 ± 0.0005 0.0432 ± 0.0139 0.0746 ± 0.0165 
IGDX 0.0192 ± 0.0027 0.0159 ± 0.0013 0.0158 ± 0.0005 0.0431 ± 0.0139 0.0738 ± 0.0165 
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Table B1 (continued ) 

Problem Metric AGE-MODE MOAGDE MO_Ring_PSO_SCD OMNI NSGAII 

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std 

IGDF 0.0012 ± 0.0001 0.0018 ± 0.0001 0.0018 ± 0.0001 0.0014 ± 0.0001 0.0013 ± 0.0001 
MMF5 1/HV 1.1433 ± 0.0001 1.1445 ± 0.0003 1.1449 ± 0.0003 1.1438 ± 0.0008 1.1433 ± 0.0005 

1/PSP 0.0606 ± 0.0052 0.0514 ± 0.0022 0.0554 ± 0.0026 0.1140 ± 0.0136 0.1316 ± 0.0114 
IGDX 0.0604 ± 0.0052 0.0512 ± 0.0022 0.0552 ± 0.0026 0.1131 ± 0.0134 0.1306 ± 0.0115 
IGDF 0.0013 ± 0 0.0017 ± 0.0001 0.0020 ± 0.0001 0.0015 ± 0.0002 0.0013 ± 0.0001 

MMF7 1/HV 1.1426 ± 0.0001 1.1443 ± 0.0002 1.1445 ± 0.0003 1.1438 ± 0.0002 1.1432 ± 0.0003 
1/PSP 0.0148 ± 0.0012 0.0150 ± 0.0008 0.0159 ± 0.0007 0.0248 ± 0.0056 0.0469 ± 0.0077 
IGDX 0.0147 ± 0.0012 0.0149 ± 0.0007 0.0159 ± 0.0007 0.0247 ± 0.0055 0.0465 ± 0.0075 
IGDF 0.0011 ± 0.0001 0.0017 ± 0.0001 0.0018 ± 0.0001 0.0015 ± 0.0001 0.0013 ± 0.0001 

MMF8 1/HV 2.3664 ± 0.0016 2.4100 ± 0.0280 2.3889 ± 0.0161 2.3646 ± 0.0004 2.3633 ± 0.0003 
1/PSP 0.0838 ± 0.0215 0.0692 ± 0.0129 0.0406 ± 0.0022 0.1646 ± 0.0978 0.6662 ± 0.2763 
IGDX 0.0812 ± 0.0198 0.0673 ± 0.0122 0.0404 ± 0.0021 0.1609 ± 0.0963 0.5517 ± 0.2067 
IGDF 0.0013 ± 0 0.0029 ± 0.0002 0.0028 ± 0.0002 0.0016 ± 0.0001 0.0013 ± 0.0001 

MMF10 1/HV 0.0777 ± 0 0.0795 ± 0.0006 0.0796 ± 0.0006 0.0797 ± 0.0025 0.0820 ± 0.0031 
1/PSP 0.0020 ± 0.0001 0.0233 ± 0.0081 0.0280 ± 0.0170 0.0889 ± 0.0915 0.1913 ± 0.1362 
IGDX 0.0020 ± 0.0001 0.0223 ± 0.0068 0.0264 ± 0.0141 0.0823 ± 0.0881 0.1875 ± 0.1375 
IGDF 0.0065 ± 0.0004 0.0918 ± 0.0188 0.1012 ± 0.0377 0.1004 ± 0.0981 0.1850 ± 0.1078 

MMF11 1/HV 0.0688 ± 0 0.0689 ± 0 0.0690 ± 0 0.0689 ± 0 0.0689 ± 0 
1/PSP 0.0026 ± 0.0001 0.0051 ± 0.0004 0.0055 ± 0.0004 0.0043 ± 0.0003 0.0036 ± 0.0004 
IGDX 0.0026 ± 0.0001 0.0051 ± 0.0004 0.0055 ± 0.0004 0.0043 ± 0.0003 0.0036 ± 0.0004 
IGDF 0.0092 ± 0.0005 0.0145 ± 0.0011 0.0183 ± 0.0014 0.0122 ± 0.0016 0.0110 ± 0.0005 

MMF12 1/HV 0.6354 ± 0.0000 0.6385 ± 0.0008 0.6394 ± 0.0019 0.6366 ± 0.0030 0.6362 ± 0.0019 
1/PSP 0.0014 ± 0.0001 0.0044 ± 0.0006 0.0039 ± 0.0004 0.0028 ± 0.0022 0.0022 ± 0.0012 
IGDX 0.0014 ± 0.0001 0.0044 ± 0.0006 0.0039 ± 0.0004 0.0028 ± 0.0022 0.0022 ± 0.0012 
IGDF 0.0020 ± 0.0001 0.0069 ± 0.0008 0.0073 ± 0.0013 0.0036 ± 0.0040 0.0027 ± 0.0014 

MMF13 1/HV 0.0542 ± 0 0.0544 ± 0 0.0545 ± 0.0001 0.0543 ± 0 0.0542 ± 0 
1/PSP 0.0378 ± 0.0052 0.0365 ± 0.0027 0.0373 ± 0.0024 0.0708 ± 0.0148 0.1046 ± 0.0318 
IGDX 0.0377 ± 0.0051 0.0361 ± 0.0026 0.0368 ± 0.0024 0.0680 ± 0.0115 0.0876 ± 0.0147 
IGDF 0.0116 ± 0.0002 0.0263 ± 0.0030 0.0325 ± 0.0047 0.0154 ± 0.0011 0.0138 ± 0.0007 

MMF14 1/HV 0.3511 ± 0.0090 0.3855 ± 0.0685 0.3561 ± 0.0224 0.3348 ± 0.0071 0.3543 ± 0.0063 
1/PSP 0.0458 ± 0.0029 0.0486 ± 0.0016 0.0466 ± 0.0013 0.0795 ± 0.0051 0.0961 ± 0.0125 
IGDX 0.0458 ± 0.0029 0.0486 ± 0.0016 0.0466 ± 0.0013 0.0795 ± 0.0051 0.0961 ± 0.0125 
IGDF 0.0493 ± 0.0010 0.0664 ± 0.0020 0.0687 ± 0.0012 0.0847 ± 0.0031 0.0987 ± 0.0056 

MMF15 1/HV 0.2366 ± 0.0047 0.2464 ± 0.0118 0.2468 ± 0.0162 0.2422 ± 0.0119 0.2384 ± 0.0061 
1/PSP 0.0401 ± 0.0010 0.0499 ± 0.0022 0.0511 ± 0.0019 0.0704 ± 0.0056 0.0745 ± 0.0083 
IGDX 0.0401 ± 0.0010 0.0499 ± 0.0022 0.0511 ± 0.0019 0.0704 ± 0.0056 0.0745 ± 0.0083 
IGDF 0.0726 ± 0.0010 0.0995 ± 0.0049 0.1067 ± 0.0054 0.1390 ± 0.0109 0.1433 ± 0.0124 

MMF1_e 1/HV 1.1464 ± 0.0019 1.2504 ± 0.0985 1.1681 ± 0.0114 1.1534 ± 0.0084 1.1572 ± 0.0118 
1/PSP 1.6231 ± 1.0374 0.2712 ± 0.0337 0.3840 ± 0.1030 1.3824 ± 0.8527 2.4469 ± 1.6908 
IGDX 1.0625 ± 0.5114 0.2619 ± 0.0288 0.3449 ± 0.0751 0.9569 ± 0.5053 1.4149 ± 0.5492 
IGDF 0.0026 ± 0.0002 0.0093 ± 0.0010 0.0075 ± 0.0007 0.0061 ± 0.0071 0.0084 ± 0.0070 

MMF14_a 1/HV 0.3485 ± 0.0105 0.3597 ± 0.0237 0.3327 ± 0.0325 0.3268 ± 0.0099 0.3467 ± 0.0068 
1/PSP 0.0646 ± 0.0034 0.0568 ± 0.0020 0.0529 ± 0.0012 0.0974 ± 0.0086 0.1243 ± 0.0141 
IGDX 0.0646 ± 0.0034 0.0567 ± 0.0020 0.0528 ± 0.0012 0.0974 ± 0.0086 0.1243 ± 0.0141 
IGDF 0.0504 ± 0.0011 0.0665 ± 0.0015 0.0673 ± 0.0015 0.0912 ± 0.0030 0.1042 ± 0.0072 

MMF15_a 1/HV 0.2370 ± 0.0051 0.2484 ± 0.0130 0.2401 ± 0.0149 0.2358 ± 0.0092 0.2396 ± 0.0078 
1/PSP 0.0499 ± 0.0017 0.0581 ± 0.0029 0.0553 ± 0.0019 0.0896 ± 0.0076 0.1045 ± 0.0117 
IGDX 0.0499 ± 0.0017 0.0579 ± 0.0029 0.0552 ± 0.0019 0.0896 ± 0.0076 0.1045 ± 0.0117 
IGDF 0.0751 ± 0.0012 0.1035 ± 0.0051 0.1037 ± 0.0039 0.1444 ± 0.0134 0.1573 ± 0.0131 

MMF10_l 1/HV 0.0776 ± 0 0.0786 ± 0.0002 0.0789 ± 0.0003 0.0792 ± 0.0027 0.0787 ± 0.0024 
1/PSP 7.9653 ± 0.6365 0.1731 ± 0.0093 0.1747 ± 0.0090 5.7899 ± 4.1137 7.2508 ± 3.8691 
IGDX 0.2005 ± 0 0.1690 ± 0.0078 0.1677 ± 0.0027 0.1936 ± 0.0340 0.1950 ± 0.0192 
IGDF 0.1925 ± 0.0001 0.1706 ± 0.0086 0.1809 ± 0.0104 0.1933 ± 0.0322 0.1946 ± 0.0205 

MMF11_l 1/HV 0.0688 ± 0 0.0689 ± 0 0.0689 ± 0 0.0688 ± 0 0.0688 ± 0 
1/PSP 3.6812 ± 0.9552 0.5072 ± 0.5022 0.7133 ± 0.5669 2.1163 ± 0.0605 3.4516 ± 0.8072 
IGDX 0.2509 ± 0.0001 0.2130 ± 0.0239 0.2211 ± 0.0254 0.2500 ± 0.0002 0.2509 ± 0.0003 
IGDF 0.0911 ± 0.0002 0.0782 ± 0.0064 0.0814 ± 0.0072 0.0918 ± 0.0003 0.0915 ± 0.0002 

MMF12_l 1/HV 0.6352 ± 0 0.6365 ± 0.0004 0.6377 ± 0.0014 0.6353 ± 0 0.6352 ± 0 
1/PSP 2.7569 ± 0.2219 0.6968 ± 0.5556 0.6401 ± 0.5543 2.5924 ± 0.1749 2.2789 ± 0.0001 
IGDX 0.2457 ± 0.0002 0.2053 ± 0.0385 0.1968 ± 0.0425 0.2462 ± 0.0003 0.2470 ± 0.0005 
IGDF 0.0824 ± 0.0002 0.0656 ± 0.0117 0.0634 ± 0.0142 0.0822 ± 0 0.0822 ± 0.0001 

MMF13_l 1/HV 0.0542 ± 0 0.0543 ± 0 0.0543 ± 0 0.0542 ± 0 0.0542 ± 0 
1/PSP 0.5438 ± 0.0047 0.3735 ± 0.0958 0.3292 ± 0.0853 0.5926 ± 0.0141 0.6688 ± 0.0996 
IGDX 0.2561 ± 0.0019 0.2370 ± 0.0141 0.2274 ± 0.0145 0.2806 ± 0.0066 0.2918 ± 0.0113 
IGDF 0.1442 ± 0.0004 0.0896 ± 0.0232 0.0876 ± 0.0137 0.1449 ± 0.0009 0.1447 ± 0.0009 

MMF15_l 1/HV 0.2368 ± 0.0026 0.2441 ± 0.0112 0.2357 ± 0.0080 0.2339 ± 0.0054 0.2366 ± 0.0046 
1/PSP 0.5913 ± 0.0887 0.1488 ± 0.0147 0.1516 ± 0.0178 0.3772 ± 0.1399 0.4482 ± 0.2009 
IGDX 0.2599 ± 0.0017 0.1487 ± 0.0147 0.1515 ± 0.0178 0.2491 ± 0.0185 0.2583 ± 0.0187 
IGDF 0.1745 ± 0.0035 0.1621 ± 0.0046 0.1652 ± 0.0027 0.1960 ± 0.0054 0.2036 ± 0.0090 

MMF15_a_l 1/HV 0.2353 ± 0.0037 0.2470 ± 0.0082 0.2327 ± 0.0074 0.2320 ± 0.0083 0.2340 ± 0.0046 
1/PSP 0.2612 ± 0.0040 0.1560 ± 0.0137 0.1689 ± 0.0179 0.2474 ± 0.0332 0.2758 ± 0.0268 
IGDX 0.2114 ± 0.0023 0.1527 ± 0.0119 0.1651 ± 0.0152 0.2150 ± 0.0147 0.2291 ± 0.0092 
IGDF 0.1704 ± 0.0027 0.1601 ± 0.0047 0.1665 ± 0.0024 0.1994 ± 0.0071 0.2024 ± 0.0100 

MMF16_l1 1/HV 0.2342 ± 0.0023 0.2453 ± 0.0133 0.2323 ± 0.0068 0.2274 ± 0.0031 0.2349 ± 0.0023 

(continued on next page) 
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Table B1 (continued ) 

Problem Metric AGE-MODE MOAGDE MO_Ring_PSO_SCD OMNI NSGAII 

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std 

1/PSP 0.1929 ± 0.0074 0.1035 ± 0.0075 0.1053 ± 0.0082 0.1944 ± 0.0295 0.2179 ± 0.0340 
IGDX 0.1482 ± 0.0010 0.1035 ± 0.0075 0.1053 ± 0.0082 0.1656 ± 0.0058 0.1768 ± 0.0085 
IGDF 0.1309 ± 0.0026 0.1267 ± 0.0033 0.1290 ± 0.0024 0.1496 ± 0.0049 0.1648 ± 0.0060 

MMF16_l2 1/HV 0.2338 ± 0.0036 0.2441 ± 0.0099 0.2303 ± 0.0083 0.2302 ± 0.0059 0.2343 ± 0.0030 
1/PSP 0.7897 ± 0.1182 0.1838 ± 0.0242 0.2036 ± 0.0290 0.5537 ± 0.1787 0.4563 ± 0.1961 
IGDX 0.3321 ± 0.0026 0.1820 ± 0.0209 0.2023 ± 0.0277 0.3169 ± 0.0224 0.3169 ± 0.0145 
IGDF 0.2267 ± 0.0044 0.1972 ± 0.0046 0.2026 ± 0.0057 0.2316 ± 0.0065 0.2383 ± 0.0052 

MMF16_l3 1/HV 0.2340 ± 0.0022 0.2411 ± 0.0112 0.2315 ± 0.0078 0.2281 ± 0.0042 0.2345 ± 0.0025 
1/PSP 0.2776 ± 0.0160 0.1409 ± 0.0120 0.1417 ± 0.0106 0.2826 ± 0.0363 0.2724 ± 0.0427 
IGDX 0.2016 ± 0.0021 0.1409 ± 0.0120 0.1414 ± 0.0101 0.2157 ± 0.0051 0.2198 ± 0.0086 
IGDF 0.1772 ± 0.0034 0.1613 ± 0.0047 0.1604 ± 0.0033 0.1870 ± 0.0039 0.1983 ± 0.0062 

Overall  42/96 30/42 14/96 10/96 12/96  

References 

[1] P.P. Biswas, P.N. Suganthan, R. Mallipeddi, G.A.J. Amaratunga, Optimal power 
flow solutions using differential evolution algorithm integrated with effective 
constraint handling techniques, Eng. Appl. Artif. Intell. 68 (2018) 81–100, https:// 
doi.org/10.1016/j.engappai.2017.10.019. 

[2] S. Li, W. Gong, L. Wang, X. Yan, C. Hu, Optimal power flow by means of improved 
adaptive differential evolution, Energy 198 (2020), 117314, https://doi.org/ 
10.1016/j.energy.2020.117314. 

[3] S. Li, W. Gong, C. Hu, X. Yan, L. Wang, Q. Gu, Adaptive constraint differential 
evolution for optimal power flow, Energy 235 (2021), 121362, https://doi.org/ 
10.1016/j.energy.2021.121362. 

[4] A.-A.A. Mohamed, Y.S. Mohamed, A.A.M. El-Gaafary, A.M. Hemeida, Optimal 
power flow using moth swarm algorithm, Electr. Power Syst. Res. 142 (2017) 
190–206, https://doi.org/10.1016/j.epsr.2016.09.025. 

[5] B. Bentouati, A. Khelifi, A.M. Shaheen, R.A. El-Sehiemy, An enhanced moth-swarm 
algorithm for efficient energy management based multi dimensions OPF problem, 
J. Ambient Intell. Hum. Comput. 12 (2021) 9499–9519, https://doi.org/10.1007/ 
s12652-020-02692-7. 

[6] K. Srilakshmi, P. Ravi Babu, P. Aravindhababu, An enhanced most valuable player 
algorithm based optimal power flow using Broyden’s method, Sustain. Energy 
Technol. Assess. 42 (2020), 100801, https://doi.org/10.1016/j.seta.2020.100801. 

[7] P. Pravina, M.R. Babu, A.R. Kumar, Solving optimal power flow problems using 
adaptive quasi-oppositional differential migrated biogeography-based 
optimization, J. Electr. Eng. Technol. 16 (2021) 1891–1903, https://doi.org/ 
10.1007/s42835-021-00739-z. 

[8] A. Meng, C. Zeng, P. Wang, D. Chen, T. Zhou, X. Zheng, H. Yin, A high-performance 
crisscross search based grey wolf optimizer for solving optimal power flow 
problem, Energy 225 (2021), 120211, https://doi.org/10.1016/j. 
energy.2021.120211. 

[9] S. Abd el-sattar, S. Kamel, M. Ebeed, F. Jurado, An improved version of salp swarm 
algorithm for solving optimal power flow problem, Soft Comput. 25 (2021) 
4027–4052, https://doi.org/10.1007/s00500-020-05431-4. 

[10] T.H.B. Huy, P. Nallagownden, K.H. Truong, R. Kannan, D.N. Vo, N. Ho, Multi- 
objective search group algorithm for engineering design problems, Appl. Soft 
Comput. 126 (2022), 109287, https://doi.org/10.1016/j.asoc.2022.109287. 

[11] T.H.B. Huy, D. Kim, D.N. Vo, Multiobjective optimal power flow using 
multiobjective search group algorithm, IEEE Access 10 (2022) 77837–77856, 
https://doi.org/10.1109/ACCESS.2022.3193371. 

[12] J. Zhang, S. Wang, Q. Tang, Y. Zhou, T. Zeng, An improved NSGA-III integrating 
adaptive elimination strategy to solution of many-objective optimal power flow 
problems, Energy 172 (2019) 945–957, https://doi.org/10.1016/j. 
energy.2019.02.009. 

[13] R.A. El Sehiemy, F. Selim, B. Bentouati, M.A. Abido, A novel multi-objective hybrid 
particle swarm and salp optimization algorithm for technical-economical- 
environmental operation in power systems, Energy 193 (2020), 116817, https:// 
doi.org/10.1016/j.energy.2019.116817. 

[14] J. Qian, P. Wang, C. Pu, G. Chen, Joint application of multi-object beetle antennae 
search algorithm and BAS-BP fuel cost forecast network on optimal active power 
dispatch problems, Knowl. -Based Syst. 226 (2021), 107149, https://doi.org/ 
10.1016/j.knosys.2021.107149. 

[15] A.M. Shaheen, R.A. El-Sehiemy, M.M. Alharthi, S.S.M. Ghoneim, A.R. Ginidi, 
Multi-objective jellyfish search optimizer for efficient power system operation 
based on multi-dimensional OPF framework, Energy 237 (2021), 121478, https:// 
doi.org/10.1016/j.energy.2021.121478. 

[16] P.P. Biswas, P.N. Suganthan, R. Mallipeddi, G.A.J. Amaratunga, Multi-objective 
optimal power flow solutions using a constraint handling technique of evolutionary 
algorithms, Soft Comput. 24 (2020) 2999–3023, https://doi.org/10.1007/s00500- 
019-04077-1. 

[17] A.M. Shaheen, R.A. El-Sehiemy, H.M. Hasanien, A.R. Ginidi, An improved heap 
optimization algorithm for efficient energy management based optimal power flow 
model, Energy 250 (2022), 123795, https://doi.org/10.1016/j. 
energy.2022.123795. 

[18] J. Qian, P. Wang, C. Pu, X. Peng, G. Chen, Application of modified beetle antennae 
search algorithm and BP power flow prediction model on multi-objective optimal 
active power dispatch, Appl. Soft Comput. 113 (2021), 108027, https://doi.org/ 
10.1016/j.asoc.2021.108027. 

[19] H.T. Kahraman, M. Akbel, S. Duman, Optimization of optimal power flow problem 
using multi-objective manta ray foraging optimizer, Appl. Soft Comput. 116 
(2022), 108334, https://doi.org/10.1016/j.asoc.2021.108334. 

[20] P.P. Biswas, P.N. Suganthan, G.A.J. Amaratunga, Optimal power flow solutions 
incorporating stochastic wind and solar power, Energy Convers. Manag. 148 
(2017) 1194–1207, https://doi.org/10.1016/j.enconman.2017.06.071. 
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