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H I G H L I G H T S  

• A robust real-time energy management for hydrogen refueling station is developed. 
• Hydrogen chains consider both power-to-hydrogen and hydrogen-to-power pathways. 
• GAIL is proposed to guide the DRL agent to mimic expert scheduling strategy. 
• Total profit increases by up to 29% when applying the proposed GAIL. 
• GAIL outperforms the other algorithms by significant margins.  
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A B S T R A C T   

As the demand for hydrogen fuel increases with the rise of fuel-cell electric vehicles (FCEVs), the energy man
agement of hydrogen refueling stations (HRSs) is crucial for operational efficiency and environmental sustain
ability. Although previous studies have applied various energy management methods to HRSs, the application of 
data-driven approaches for real-time optimization remains very limited. This study addresses this gap by pro
posing a novel energy management model for optimal real-time energy scheduling of on-grid HRSs using 
generative adversarial imitation learning (GAIL). The proposed algorithm aims to mimic expert demonstrations 
to enhance decision-making. Initially, expert trajectories are constructed by collecting state-action pairs, ach
ieved by solving a deterministic energy scheduling model using historical data and a mixed integer linear pro
gramming (MILP) solver. These expert trajectories are then used to train the GAIL algorithm. Through 
adversarial training involving policy and discriminator networks, GAIL accurately simulates expert behavior, 
enabling strategic decisions regarding power-to‑hydrogen conversion, hydrogen-to-power conversion, and FCEV 
refueling to maximize system profit. The applicability and feasibility of the GAIL algorithm are evaluated across a 
wide range of scenarios. The results show that total profit increases by up to 29% with the application of the 
proposed GAIL algorithm. Compared to well-regarded deep reinforcement learning methods, GAIL demonstrates 
superior performance, proving its effectiveness in real-time energy scheduling of on-grid HRSs.   

1. Introduction 

1.1. Background and motivation 

Global energy demand and environmental concerns have surged 
significantly due to industrialization and economic growth [1]. 

Consequently, governments worldwide have gradually committed to 
building resource-efficient and environmentally friendly societies [2]. 
Hydrogen, with its high energy density and environmental benefits, is 
emerging as an ideal alternative energy source [3]. In recent years, there 
has been a significant acceleration in the market adoption of fuel cell 
electric vehicles (FCEVs) [4]. By 2030, it is projected that one in twelve 
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cars sold in Germany, Japan, California, and South Korea will be 
hydrogen-powered. Additionally, over 350,000 hydrogen-powered 
trucks are expected to be in operation, and numerous trains and ships 
can ferry passengers without releasing carbon dioxide into the envi
ronment [5]. Fuel cell electric vehicles (FCEVs), alongside battery 
electric vehicles (BEVs), play a crucial role in decarbonizing the trans
portation sector. FCEVs are particularly user-friendly due to their long- 
range refueling cycles and ability to travel long distances [6]. However, 
the widespread adoption of FCEVs is hindered by the global shortage of 
hydrogen refueling stations (HRSs). A promising solution is the inte
gration of onsite hydrogen generation within HRSs, utilizing onsite 
electrolyzers [7]. When combined with renewable energy sources, these 
HRSs can provide a sustainable supply of green hydrogen for FCEVs. 
Moreover, hydrogen storage technology can effectively manage excess 
renewable energy, enhancing system profitability [8]. Despite these 
advantages, such systems face significant challenges due to the high 
variability of renewable power sources, energy prices, and hydrogen 
demand. Current methods do not adequately address these challenges, 
particularly in real-time scenarios. Therefore, this study proposes a 
robust real-time energy management tool to ensure the efficient oper
ation of HRSs, addressing the complexities and dynamics of modern 
energy systems. 

1.2. Literature review 

In recent years, HRS energy management has attracted the attention 
of researchers due to its critical role in the transition towards a sus
tainable and low-carbon energy future. Najafi et al. [9] developed a 
stochastic-robust bi-level optimization model to integrate HRS into 
active distribution networks (ADNs). Their study aimed to minimize 
ADN costs while ensuring system profitability. The model demonstrated 
that ADNs could adjust their strategies during peak times and worst-case 
electricity pricing scenarios, proving the technical feasibility of inte
grating HRSs. Furthermore, Wu et al. [10] investigated a multistage 
stochastic programming model to devise an optimal strategy for an HRS 
under various uncertainties, including hydrogen demand, system 
imbalance price, day-ahead price, and secondary reserve price. The 
main limitation of these studies is the lack of integration of renewable 
energy sources in energy management strategies, which could result in 
less environmentally friendly strategies and more dependence on fluc
tuating conventional energy prices. 

Hydrogen production from renewable energy sources in HRSs offers 
a viable approach to utilizing clean energy and reducing greenhouse gas 
emissions. The production and utilization of low-carbon hydrogen are 
crucial for achieving a sustainable society, prompting several studies on 
renewable energy-powered HRSs. The authors in [11] introduced a 
photovoltaic (PV)-powered energy system for HRSs, where hydrogen 
was produced using a proton exchange membrane electrolyzer powered 
by both PV and grid electricity. This study optimized the system’s 
operation using a mixed-integer linear programming (MILP) model, 
focusing on reducing CO2 emissions and maximizing electrolyzer ca
pacity utilization. However, this study did not consider uncertainties 
related to renewable energy supply, electricity prices, and hydrogen 
demand. Similarly, Tostado-Véliz et al. [12] developed a multi-energy 
microgrid model that integrated electrical, natural gas, and hydrogen 
subsystems. Their research explored charging stations for various vehi
cles, enabling FCEVs and natural gas vehicles (NGVs) to refuel using 
medium-sized electric gas systems. While this model advanced the 
integration of multiple energy sources, it also neglected the impact of 
uncertainties. Without accounting for the uncertainties, the models may 
not accurately reflect real-world conditions, potentially compromising 
the reliability and economic performance of HRSs. 

Renewable energy-powered HRSs face numerous uncertainties, 
including fluctuating energy outputs, electricity prices, and hydrogen 
demand. Addressing these uncertainties is crucial for optimizing the 
scheduling strategy to enhance the profitability of such stations. Various 

mathematical optimization methods are frequently employed to manage 
forecast errors in day-ahead scheduling [13]. Shams et al. [14] pre
sented a model for coordinating HRS and delivery systems in the retail 
sector by applying bi-level programming to solve the MILP problem. 
They utilized the chance-constrained method to address uncertainties in 
renewable generation and demand, revealing that hydrogen prices are 
influenced by station production capacities and power prices. Grüger 
et al. [15] proposed an intelligent strategy for operating HRSs with 
onsite electrolysis, focusing on cost optimization and wind energy uti
lization based on electricity prices, wind availability, and hydrogen 
demand forecasts. Despite the conservative nature of the strategy, it 
successfully enhances wind energy usage and reduces hydrogen pro
duction costs by accounting for imperfect forecasts and the nonlinear 
behavior of electrolyzers. Lakouraj et al. [16] introduced a microgrid 
scheduling model that optimizes HRSs, demand response (DR), energy 
storage systems (ESS), and multi-market participation to minimize 
operational costs. Their risk-constrained stochastic scheduling model, 
which incorporates conservative parameters, effectively addresses un
certainties in market prices, renewable energy generation, loads, and 
hydrogen vehicle usage. Shoja et al. [17] developed a risk-averse opti
mization framework for integrating an EV charging park and HRS within 
a local multi-energy system. Utilizing power-to‑hydrogen and DR pro
grams, this framework enhances system flexibility and reduces costs. 
However, a significant limitation of these studies is the exclusion of fuel 
cells in hydrogen systems. 

Recent studies have incorporated fuel cells into hydrogen systems to 
improve flexibility in energy management models. By converting 
hydrogen back into electricity, fuel cells can provide an additional 
revenue source for HRSs. Garcia-Torres et al. [18] developed a model- 
predictive control (MPC)-based dispatch methodology for microgrid 
operations, which included external agents and BEVs / FCEVs. This 
study optimized economic benefits by adjusting supply to meet external 
energy requests and incorporating operation and degradation costs into 
the objective function. The methodology utilized mixed-integer 
quadratic programming (MIQP) within a mixed-logic dynamic frame
work. However, the study did not model uncertainties. The authors in 
[19] presented a standalone hybrid refueling station supplying elec
tricity, hydrogen, and natural gas to electric vehicles (EVs), FCEVs, and 
NGVs, leveraging wind and PV power for direct EV charging and ver
satile hydrogen production. This study addressed uncertainties in wind, 
PV power, and vehicle demands using stochastic optimization (SO) and 
information gap decision theory (IGDT) with risk-seeker and risk-averse 
approaches within an MILP framework. Mansour-Satloo et al. [20] 
introduced a low-carbon energy management model for a combined 
hydrogen, heat, and power microgrid, which included hydrogen fueling 
stations, EV parking, and fuel cell units for power and heat. Based on an 
IGDT-based robust approach, this model effectively managed un
certainties in wind and PV power, significantly reducing operational 
costs by 76.35%. Mobasseri et al. [21] introduced a robust hybrid energy 
management tool for multi-energy microgrids that handled demand and 
renewable generation uncertainties effectively. Their study utilized the 
Hong 2 m + 1 approach for renewables, IGDT for electric and heat de
mands, and scenario-based modeling for FCEV refueling. In a related 
study [22], the authors introduced a stochastic-interval model for 
optimizing PV-assisted HRSs, incorporating interval notation for 
renewable generation, energy pricing uncertainties, and scenario-based 
vehicle demand modeling. This detailed stochastic model for FCEVs 
included driving behavior and vehicle characteristics. Despite the sig
nificant advancements, these studies predominantly focused on 
modeling and forecasting uncertainties for day-ahead scheduling. A 
critical limitation is their inability to address real-time scheduling 
problems, as actual operating decisions may be re-optimized based on 
short-term forecasts of uncertainties. This highlights the need for 
methodologies capable of handling real-time adjustments to ensure 
optimal operation in dynamically changing environments [23]. 

Deep reinforcement learning (DRL) has recently emerged as a 
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significant area of research in artificial intelligence. In contrast to con
ventional methods, DRL algorithms are both data-based and model-free, 
continuously learning while interacting with the environment and 
finally making decisions. This characteristic makes DRL a robust 
framework for handling uncertainties in complex environments. Various 
studies have applied DRL algorithms to tackle the complexities of real- 
time energy management. Cao et al. [24] introduced a proximal policy 
optimization (PPO)-based scheduling method for HRS to address un
certainties in hydrogen demand. Qi et al. [25] developed an energy 
management optimization model for an on-grid HRS using an enhanced 
dueling double-deep Q-network (D3QN) algorithm integrated with 
NoisyNet. The NoisyNet-D3QN approach outperformed other DRL al
gorithms by improving exploration efficiency and action generalization. 
Additionally, Jiang et al. [26] proposed an optimal scheduling model for 
HRS based on transfer multi-agent RL, aiming to maximize revenue by 
catering to mobility and power systems via reserve demand response. 
This approach enhances decision-making and accelerates learning, with 
numerical studies indicating a potential revenue increase of up to 
32.90% and a 34-fold reduction in computation time compared to 
conventional RL methods. Despite the promising applications, there are 
relatively few studies on DRL algorithms for the energy management of 
HRS. Although DRL is capable of solving complex optimization chal
lenges in dynamic and uncertain environments, it still faces limitations 
due to the inherent nature of learning from trial and error, which can 
result in unstable performance [27]. 

Imitation learning (IL) [28] offers an alternative solution, which 
directly learns the optimal policy from expert demonstrations. In energy 
management problems where all information is available from historical 
data, a dedicated MILP solver can easily obtain global optimal solutions. 
In this way, the MILP solver can serve as the expert, and these optimal 
solutions can be used as expert demonstrations. Accordingly, IL lever
ages expert demonstrations to guide the learning process, significantly 
reducing the need for extensive trial-and-error exploration typical in 
reinforcement learning (RL). Consequently, IL can achieve more 
competent performance than RL. Behavior cloning (BC) [29] is a 
straightforward IL approach that treats the problem as a supervised 
learning task. The objective is to learn a mapping from states to actions 
by training on collected state-action pairs. However, the BC approach 
requires a large amount of data [30] and is particularly susceptible to 
compounding errors [31], where small prediction mistakes accumulate 
over time, causing the agent to deviate from the expert’s trajectory. 
Inverse reinforcement learning (IRL) [32] is another IL approach that 
aims to learn the underlying reward function that the expert is opti
mizing. This reward function can then be used to derive a policy that 
replicates the expert behavior. However, IRL is computationally inten
sive due to the complexity of learning the reward function through 
optimization, making it challenging to apply to large or high- 
dimensional environments. Additionally, IRL focuses on learning a 
cost function that explains the expert behavior but does not directly 
guide the learner on how to act [33]. Recently, a third approach to IL has 
been proposed, namely generative adversarial imitation learning (GAIL) 
[33], which is inspired by generative adversarial networks (GANs) [34]. 
GAIL involves training a discriminator to differentiate between the ex
pert’s actions and the agent’s actions while simultaneously training the 
agent to generate actions that the discriminator cannot distinguish from 
the expert’s. GAIL can learn directly from expert demonstrations 
without needing a predefined reward function, making it particularly 
suitable for environments where designing a reward function is chal
lenging or impractical. By iteratively refining the policy through 
adversarial training, GAIL can train agents to perform well even in 
scenarios not explicitly covered by expert demonstrations. Hence, GAIL 
can generalize better than BC. GAIL has been successfully applied in 
robotics [35], autonomous driving [36], and various other domains. 
However, it has not yet been applied to energy management systems. 

1.3. Research gaps 

A literature review revealed that past studies suffer from several 
significant limitations:  

- Many studies have focused on HRSs without incorporating fuel-cell 
models. Consequently, these studies have overlooked the potential 
for selling excess energy back to the grid, a strategy that could 
significantly increase overall profitability. This highlights the need 
for more comprehensive models that include fuel-cell integration 
and the associated benefits of energy trading.  

- Traditionally, day-ahead scheduling relies heavily on forecasting and 
modeling uncertain parameters. Inaccurate predictions or missing 
uncertainty distribution information can result in suboptimal solu
tions. Furthermore, pre-defined schedules may need to be adjusted or 
rescheduled based on real-time information, which these traditional 
methods cannot handle. As a result, these methods often lack the 
necessary flexibility to adapt to real-time changes in operating con
ditions, leading to inefficiencies and potential economic losses. This 
inflexibility underscores the need for more effective energy man
agement strategies to accommodate the uncertainties in energy 
management problems.  

- The application of data-driven methods to HRS energy management 
remains limited. Only a few recent studies have explored the use of 
DRL algorithms for this purpose. However, DRL algorithms often face 
challenges such as instability and slow convergence, primarily due to 
their reliance on trial-and-error learning processes. Furthermore, 
despite the potential advantages, there are currently no studies that 
apply GAIL in the context of HRS energy management. This high
lights an opportunity to leverage GAIL capabilities to develop more 
stable, efficient, and effective energy management solutions that can 
overcome the limitations of existing DRL approaches. 

1.4. Research contributions 

Inspired by the above motivations and research gaps, this study de
velops a Generative Adversarial Imitation Learning (GAIL) algorithm for 
the energy management of hydrogen refueling stations (HRS). In 
contrast to traditional RL algorithms that can struggle with the complex 
and dynamic nature of the environment, GAIL leverages adversarial 
training to imitate optimal policy behaviors effectively. The proposed 
algorithm combines the strengths of GANs and IL to address the energy 
scheduling problem associated with hydrogen production, storage, and 
refueling operations. GAIL can effectively handle the associated un
certainties related to energy pricing, renewable generation, and FCEV 
demand. Additionally, GAIL enhances performance by delivering more 
reliable and cost-effective energy management solutions. Notably, this is 
the first study to develop and apply GAIL in the context of HRS energy 
management. The main contributions of this study are as follows:  

- This study proposes a comprehensive model for an on-grid HRS 
incorporating various components such as a solar PV panel, an onsite 
electrolyzer, a fuel cell, a compressor for FCEV refueling, and a 
hydrogen storage tank. The model also includes a hydrogen-to- 
power process via fuel cells, allowing the sale of excess energy to 
the grid and generating additional revenue. The optimization prob
lem is formulated as a MILP problem with the objective of maxi
mizing total profit while ensuring a reliable hydrogen supply. A 
dedicated MILP solver resolves the optimization problem, collects 
state-action pairs, and constructs expert trajectories. This expert 
knowledge is then utilized to train a policy through GAIL.  

- Our study develops a robust energy management framework for HRS 
that effectively handles uncertainties in energy pricing, renewable 
generation, and FCEV demand. By leveraging GAIL, we employ 
adversarial training of policy and discriminator networks to train a 
DRL agent. This agent emulates the optimal decisions of the MILP 
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solver for the operations of the electrolyzer, fuel cell, and FCEV 
refueling. The adversarial training process ensures that the actions of 
the agent closely resemble expert demonstrations, resulting in a 
more stable and efficient training process.  

- The efficiency of the proposed GAIL algorithm is validated through 
comprehensive simulations using real-world data and compared 
with traditional DRL algorithms. The results demonstrate that GAIL 
significantly improves total profitability by up to 29% compared to 
the day-ahead MILP, presenting a highly effective and economically 
viable solution. The results achieved by GAIL closely approach the 
theoretical minimum for HRS models, indicating that the agent 
effectively learns and mimics the expert behaviors of the MILP 
solver. This capability allows GAIL to make near-optimal decisions 
based on real-time information, ensuring highly efficient energy 
management. Additionally, GAIL significantly outperforms standard 
DRL algorithms, confirming its superior performance and adapt
ability for real-time energy management. Consequently, GAIL em
phasizes its potential to enhance the flexibility, robustness, and 
overall performance of HRS energy management systems. 

The remainder of this paper is organized as follows. Section 2 in
troduces the mathematical model of the HRS. The methodology is 
described in detail in Section 3. Section 4 presents the simulation results, 
and the conclusions are presented in Section 5. 

2. Mathematical model 

Fig. 1 presents a schematic of the proposed on-grid HRS, which in
cludes PV panels and a hydrogen chain established using an onsite 
electrolyzer, fuel cell, compressor for FCEV refueling, and a hydrogen 
storage system (HSS). Electricity powered by the utility grid and PV 
panels can produce hydrogen via water electrolysis. The produced 
hydrogen is then stored in HSS, from which the hydrogen chain can 
either refuel FCEVs via the compressor or generate electricity via the 

fuel cell. Both power-to‑hydrogen and hydrogen-to-power pathways are 
considered, allowing the HRS to buy or sell energy flexibly and generate 
revenue from the utility grid. The HRS is centrally operated by a system 
operator who receives forecast information on energy prices, weather, 
and hydrogen demand and then performs an energy scheduling strategy 
to maximize system profits. 

2.1. System modeling 

Energy scheduling for the HRS is conducted over a 24-h timeframe 
(T = 24) with a time step of 1 h (Δτ = 1). The following subsections 
provide the mathematical formulations for each system component and 
the optimal objective function. 

2.1.1. Utility grid modeling 
The power exchanged with the utility grid is limited due to 

contractual agreements or physical constraints of the grid, as specified in 
(1) and (2). Constraint (3) ensures the complementary nature of the 
buying and selling processes. The utility grid is modeled as follows [37]: 

0 ≤ pGrid,buy
t ≤ uGrid,buy

t ⋅pGrid,buy; ∀t = 1,2,…,T (1)  

0 ≤ pGrid,sell
t ≤ uGrid,sell

t ⋅pGrid,sell; ∀t = 1, 2,…,T (2)  

0 ≤ uGrid,buy
t + uGrid,sell

t ≤ 1; ∀t = 1,2,…,T (3)  

where pGrid,buy
t and pGrid,sell

t are the buying and selling power with the 
utility grid at time step t, respectively; pGrid,buy and pGrid,sell are the power 
limits that can be bought and sold with the utility grid; and uGrid,buy

t and 
uGrid,sell

t are the binary variables, denoting the buying and selling modes 
at time step t, respectively. 

2.1.2. PV generator modeling 
The available PV generation is a function of solar irradiation and 

ambient temperature, which can be expressed as follows [37]: 

p̂PV
t = pPV ⋅

[
0.25⋅υt + 0.03⋅υt ⋅θt +

(
1.01 − 1.13⋅ηPV)⋅υ2

t
]
; ∀t = 1,2,…,T

(4)  

where pPV is the rated power of PV panels, ηPV is the conversion effi
ciency of PV panels, υt and θt are the solar irradiance and ambient 
temperature at time step t, respectively. 

The PV power output ought to be restricted by the rated power as 
follows [38]: 

pPV
t =

⎧
⎨

⎩

pPV if ​ p̂PV
t > pPV

p̂PV
t otherwise

; ∀t = 1, 2,…,T (5)  

where pPV
t is the PV power output at time step t. 

2.1.3. Hydrogen chain modeling 
Hydrogen can be produced through water electrolysis using 

advanced technologies such as polymer electrolyte membranes (PEM), 
solid oxide, or alkaline electrolyzers. The hydrogen gas is stored in tanks 
for later use in refueling FCEVs or generating electricity through fuel 
cells [22]. Water electrolyzers and fuel cells perform opposite reactions 
involving hydrogen and oxygen. Table 1 lists the fundamental electro
chemical reactions that occur in each system. An electrolyzer splits 

Fig. 1. Schematic diagram of the proposed HRS containing PV panels and a 
hydrogen chain established using an electrolyzer, fuel cells, a compressor for 
refueling FCEVs, and HSS. 

Table 1 
Fundamental electrochemical reactions in water electrolysis and fuel cells.   

Electrolyzer Fuel cell 

Anode 2H2O(l)→O2(g)+ 4H+(aq)+ 4e− H2(g)→2H+(aq)+ 2e−

Cathode 4H+(aq)+ 4e− →2H2(g) O2(g)+ 4H+(aq)+ 4e− →2H2O(l)
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water into hydrogen and oxygen using electrical energy, an endothermic 
process requiring energy input. In an electrolyzer, water at the anode 
side is oxidized to produce oxygen gas, protons, and electrons. The 
electrons travel through an external circuit to the cathode side, where 

they reduce protons to produce hydrogen gas. Conversely, fuel cells 
generate electrical energy from hydrogen and oxygen through an 
exothermic reaction, which releases energy. In a fuel cell, hydrogen at 
the anode side is oxidized, producing protons and electrons. The elec
trons travel through an external circuit to the cathode side, performing 
work along the way (e.g., powering an electric motor). At the cathode, 
oxygen reacts with protons and electrons to produce water. In essence, 
an electrolyzer uses electrical energy to facilitate the reaction between 
water and oxygen to produce hydrogen gas, while a fuel cell decomposes 
hydrogen to initiate the flow of electricity from the anode to the 
cathode. 

In this study, the mathematical modeling of the hydrogen chain is 
simplified in energy management problems using linearized equations, 
as proposed in [16]. The hydrogen mass flows in the electrolyzer and 
fuel cell are defined by (6) and (7), respectively [8]. Moreover, the op
erations of the electrolyzer and fuel cell are constrained by their 
maximum and minimum powers, as specified in (8) and (9) [39]. It is 
also assumed that the electrolyzer and fuel cell do not operate simul
taneously, as indicated in (10). 

gEZ
t = ηEZ⋅

pEZ
t

LHV
; ∀t = 1,2,…,T (6)  

gFC
t =

pFC
t

LHV⋅ηFC; ∀t = 1,2,…,T (7)  

uEZ
t ⋅p EZ ≤ pEZ

t ≤ uEZ
t ⋅pEZ; ∀t = 1,2,…,T (8)  

uFC
t ⋅p FC ≤ pFC

t ≤ uFC
t ⋅pFC; ∀t = 1,2,…,T (9)  

0≤ uEZ
t + uFC

t ≤ 1; ∀t = 1, 2,…,T (10)  

where gEZ
t and gFC

t are the hydrogen mass flows of the electrolyzer and 
fuel cell at time step t, respectively; pEZ

t and pFC
t are the powers of the 

electrolyzer and fuel cell at time step t, respectively; p EZ and pEZ are the 
minimum and maximum powers of the electrolyzer, respectively; p FC 

and pFC are the minimum and maximum powers of the fuel cell, 
respectively; uEZ

t and uFC
t are the binary variables, denoting the operation 

modes of the electrolyzer and fuel cell at time step t, respectively; ηEZ and 
ηFC are the efficiencies of the electrolyzer and fuel cell, respectively; and 
LHV is hydrogen lower heating value. 

The amount of refueled hydrogen must not exceed the expected 
FCEV refueling demand, as shown in (11) [22]. 

gFCEV
t ≤ uFCEV

t ⋅gFCEV
t ; ∀t = 1, 2,…,T (11)  

where gFCEV
t is the amount of hydrogen refueled at time step t, gFCEV

t is the 
expected demand of the FCEV at time step t, and uFCEV

t is a binary var
iable denoting the operation mode of the compressor for FCEV refueling 
at time step t. 

In this study, a steady-state model is applied to represent the state of 
pressure (SOP) in the HSS, as presented in (12) [16]. This model ac
counts for gas dissipation and equates the inflow and outflow mass flows 
to the hydrogen flows through the electrolyzer and compressor/fuel cell. 

Moreover, the SOP of the HSS is limited by constraint (13) [22]. Finally, 
the SOPs at the initial and final time steps of the scheduling horizon are 
established according to constraint (14) [22].  

SOP HSS ≤ SOPHSS
t ≤ SOPHSS; ∀t = 1,2,…,T (13)  

SOPHSS
Γ(1) = SOPHSS

Γ(end) = SOPHSS (14)  

where SOPHSS
t is the SOP of the HSS at time step t; SOP HSS and SOPHSS are 

the minimum and maximum SOPs of the HSS, respectively; γ is the 
conversion factor, R is the gas constant, θHSS is the HSS temperature, vHSS 

is the gas volume, ζ is the mass molar of hydrogen, and ψ is the dissi
pation factor. 

2.1.4. Power balance 
In the proposed system, the power balance should be maintained at 

any time step as follows [22]: 

pGrid,buy
t + pPV

t + PFC
t = PGrid,sell

t + pEZ
t + pComp

t ; ∀t = 1, 2,…,T (15)  

where pComp
t is the power consumption of the compression stages, which 

can be calculated based on the amount of hydrogen refueled as follows 
[22]: 

pComp
t =

gFCEV
t ⋅ςComp

Δτ⋅ηComp ; ∀t = 1, 2,…,T (16)  

where ςComp and ηComp are the energy consumption and efficiency of the 
compressor, respectively. 

2.1.5. System profit 
The total profit of an HRS can be expressed as follows [22]: 

Ft = FFCEV
t − FGrid

t − FEZ
t − FFC

t ; ∀t = 1,2,…,T (17) 

In (17), the first term represents the FCEV refueling revenue, which is 
given by (17) [22]: 

FFCEV
t = λFCEV ⋅gFCEV

t ; ∀t = 1, 2,…,T (18)  

where λFCEV is the hydrogen price. 
The second term in (17) represents the cost of the energy exchange 

with the main grid [22]. 

FGrid
t = Δτ⋅

(
λGrid,buy

t ⋅pGrid,buy
t − λGrid,sell

t ⋅pGrid,sell
t

)
; ∀t = 1, 2,…,T (19)  

where λGrid,buy
t and λGrid,sell

t are the buying and selling prices at time step t, 
respectively. 

The costs related to the operation and maintenance of the electro
lyzer and fuel cell are given in the last two terms in (17) as follows [39]: 

Fi
t = Δτ⋅

(
ki⋅pi

Ti ⋅ui
t + pi

t⋅μi

)

; ∀i ∈ {EZ, FC}; t = 1, 2,…,T (20)  

where ki, μi, and Ti are capital cost, operation and maintenance cost, and 
number of life hours of the electrolyzer/fuel cell, respectively; pi

t and ui
t 

are the power and operation mode of electrolyzer/fuel cell at time step t, 
respectively. 

SOPHSS
t = SOPHSS

t− 1 + γ⋅
R⋅θHSS

vHSS⋅ζ
⋅
(
gEZ

t − gFC
t − gFCEV

t
)
⋅Δτ − ψ

100
⋅SOPHSS

t− 1 ; ∀t = 1,2,…,T (12)   
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2.2. Objective function 

In this study, the objective of the energy scheduling problem is to 
maximize the system profit of an HRS by optimally scheduling the op
erations of the electrolyzer, fuel cell, compressor, and energy trading 
with the utility grid. Mathematically, the energy scheduling problem can 
be formulated as follows: 

P1 :
min
xt

F =
∑T

t=1
Ft

s.t. : (1) − (20)

(21)  

where the vector of decision variables can be given in (22): 

x =

⎧
⎨

⎩

pGrid,buy
t , pGrid,sell

t , pEZ
t , pFC

t , pComp
t , gEZ

t , gFC
t , gFCEV

t ,

SOPHSS
t , uGrid,buy

t , uGrid,sell
t , uEZ

t , uFC
t , uFCEV

t

⎫
⎬

⎭
; ∀t = 1, 2,…,T

(22) 

Remark: Modeling binary variables directly in MILP offers accurate 
and interpretable solutions that naturally enforce operational con
straints. This approach makes it straightforward to model scenarios 
where certain actions, such as selling and buying, cannot occur simul
taneously. Although solving MILP problems with many binary variables 
can be computationally intensive, it ensures that the operational con
straints are strictly adhered to. Alternatively, treating these binary 
variables as continuous can transform the problem into a Linear Pro
gramming (LP) problem. This transformation typically makes the 
problem easier and faster to solve using standard LP solvers. Relaxing 
binary variables to be continuous can significantly reduce computa
tional complexity and improve scalability, making it feasible to solve 
larger problems more efficiently. However, this approach requires 
careful handling during post-processing and constraint enforcement to 
ensure that the final solution is both feasible and optimal. In medium- 
scale problems, such as HRS energy management, the binary approach 
provides a clear and straightforward framework for system modeling. In 
future studies, we plan to explore the relaxation of binary variables to 
continuous for large-scale problems to take advantage of the computa
tional efficiencies this approach offers. 

3. Proposed methodology 

3.1. Markov decision process (MDP) formulation 

Energy scheduling for an HRS is essentially a sequential decision- 
making problem. Thus, it can be mathematically formulated as a Mar
kov decision process (MDP). Within this framework, the agent observes 
the current state st at each time step t, takes an action at based on a policy 
π(a|s), earns a reward rt based on this action, and transitions to the next 
state st+1. The agent aims to maximize the cumulative reward by stra
tegically adapting its policy. The MDP for energy scheduling of an HRS 
can be expressed as follows: 

State: The state is represented by a vector that includes all observable 
information at a given time step, including the time step (t), electricity 
buying price (λGrid,buy

t ), PV generation (pPV
t ), expected FCEV demand 

(gFCEV
t ), and the SOP of the HSS at the previous time step (SOPHSS

t− 1 ). The 
buying and selling prices typically show a correlation, which is repre
sented by the buying price (λGrid,buy

t ) within the state vector. Therefore, 
the state vector can be expressed as (23): 

st =
[
t, λGrid,buy

t , pPV
t , gFCEV

t , SOPHSS
t− 1
]

(23) 

Action: The agent generates actions to control the hydrogen mass 
flow in the electrolyzer, fuel cell, and compressor for FCEV refueling, 
based on a policy and the observed states at the current time step. The 
action vector is expressed as: 

at =
[
gEZ

t , gFC
t , gFCEV

t
]

(24) 

Transition model: T(st, at, st+1) is a transition model that defines the 
next state st+1 ∈ S given the current state st+1 ∈ S and the action at ∈ A. 
The transition model for the SOP of the HSS is given by (12), and other 
information in the state, including the time step, energy price, PV gen
eration, and expected FECV demand, are observed in real-time. 

Reward function: Reward rt gives the immediate reward received after 
transitioning from state st to state st+1 owing to action at. The objective of 
the agent is to find a policy π that maximizes the expected sum of dis
counted rewards over a horizon of T time steps as follows: 

max
π∈Π

J(π) = Еπ

[
∑T

t=1
γt− 1rt

]

(25)  

where Π is the collection of all allowable policies, γ ∈ [0,1] represents 
the discount factor, and Eπ represents the expected value under policy π. 
We do not define the reward function since an agent in GAIL can learn a 
policy from expert demonstrations without the explicit reward function. 

3.2. The proposed real-time optimal energy scheduling using GAIL 

This section introduces real-time energy scheduling for an HRS based 
on GAIL. GAIL is an advanced framework that combines IL with 
adversarial training, which was introduced by GANs [34]. This enables 
agents to learn complex behaviors by imitating expert demonstrations. 
The key idea behind GAIL is to train a policy that generates behavior 
indistinguishable from that of an expert without requiring explicit ac
cess to the expert policy or rewards. First, state-action pairs are collected 
sequentially to build expert trajectories using the MILP solver to solve 
problem P1 using historical data. Second, the expert trajectories 
generated by the MILP solver are fed into the discriminator of GAIL for 

Fig. 2. Overall framework of GAIL algorithm for HRS energy management, 
consisting of three stages: ① Generation of expert trajectories; ② GAIL training; 
③ Real-time energy scheduling with learned policy. 

T.H.B. Huy et al.                                                                                                                                                                                                                                



Applied Energy 373 (2024) 123847

7

training. Finally, the reward output from the discriminator is used to 
direct the agent towards actions that yield a better performance to 
maximize the total profit of the HRS. Fig. 2 depicts the overall frame
work of the proposed methodology consisting of three stages: ① Gen
eration of expert trajectories; ② GAIL training; ③ Real-time energy 
scheduling with the learned policy. 

3.2.1. Generation of expert trajectories 
The initial step involves the generation of expert trajectories. This 

crucial phase is designed to create a comprehensive dataset that models 
the optimal operational strategies and serves as a benchmark for 
learning and simulation. To accomplish this, optimization problem P1 is 
formulated as a deterministic MILP model that can be solved explicitly 
using accurately known input data. This approach leverages a wealth of 
scenarios derived from accurate input information obtained through 
historical data collection and sophisticated scenario generation ap
proaches. Each scenario is considered a scheduling cycle, encompassing 
a sequence of T timesteps representing the operational data for one 
scheduling cycle. The data include the real-time electricity price 
(λGrid,buy

Δτ , λGrid,buy
2Δτ , …, λGrid,buy

T ), solar irradiation (υΔτ, υ2Δτ, …, υT), and 
FCEV refueling demand (gFCEV

Δτ , gFCEV
2Δτ , …, gFCEV

T ). For each scenario, the 
collected data serves as inputs to the formulated problem (problem P1), 
which is tackled using a specialized MILP solver. Thus, problem P1 is 
conceptualized as a day-ahead scheduling problem, with the MILP solver 
tasked with finding the optimal values for the decision variables. Thus, 
the solution is deemed the best possible solution under the assumption 
of the availability of complete information and accurate input data. It is 
important to note that this idealized condition is not achievable in real- 
world applications, as it requires having the perfect information for an 
entire scenario in advance. 

After resolving problem P1, the input data and optimal solutions for 
each scenario enable the construction of an expert dataset comprising T 
state-action pairs D = {st , at}

T
t=1, where the state variables (st) and action 

variables (at) are explicitly defined and extracted for the time steps of a 
scheduling cycle, as in (23) and (24). This dataset captures the essence of 
expert decision-making in optimal energy scheduling scenarios. This 
approach is systematically applied across all selected scenarios, and the 
resulting state-action pairs from each scenario are merged to form a 
comprehensive expert dataset. By resolving problem P1 across N sce
narios, each scenario consists of T time steps, and expert trajectories of 
NT state-action pairs D = {si, ai}

NT
i=1 are produced. These expert trajec

tories form the foundation for the subsequent stages of the GAIL algo
rithm, providing expert knowledge for training and fine-tuning learning 
models. 

3.2.2. GAIL training 
GAIL involves two primary components: a generator G (or the policy 

of the agent) and discriminator D. The training process consists of 

alternating between updating the discriminator and the generator 
(policy) based on feedback from the discriminator in a min-max game, 
where the generator generates samples that are indistinguishable from 
the expert demonstrations, and the discriminator seeks to differentiate 
between the samples generated by the generator and those generated by 
expert demonstrations. Through iterative training, the generator learns 
to generate samples sufficiently similar to expert demonstrations, from 
which the discriminator network cannot distinguish the difference be
tween the two samples. The objective of GAIL is to define a saddle point 
(π, D) of the following expression: 

min
θ

max
ω

Eπθ [logDω(s, a) ] +EτE [log(1 − Dω(s, a) ) ] − λH(πθ) (26)  

where πθ is the policy parameterized by θ, Dω is the discriminator 
parameterized by ω, τE is the set of expert trajectories, Eπθ and EτE are the 
mathematical expectation of the learner samples and the expert 
demonstration, respectively, H(πθ)≜Eπθ [ − logπθ(a|s) ] represents the 
causal entropy of the policy πθ weighted by a regularization parameter λ. 

Fig. 3 depicts the training process of GAIL. The gradient steps are 
taken to update the parameters of discriminator network Dω and policy 
network πθ alternatively until both networks converge. Specifically, the 
agent (learner) obtains expert trajectories as inputs. Then, the agent 
interacts with the environment based on the policy πθ and generates a 
trajectory that contains a sequence of state–action pairs as τi = {(s1, a1), 
(s2, a2), …, (sn, an)}. The discriminator in GAIL outputs a value D(s, a) for 
the given state-action pair (s, a) and determines whether it originates 
from expert trajectories or is generated by the generator policy by 
interacting with the environment. Thus, the trajectory τi ~ πθ and the 
expert trajectory τE are used to update the discriminator with the Adam 
optimizer, which maximizes the following function: 

Eτi [logDω(s, a) ]+ EτE [log(1 − Dω(s, a) ) ] (27) 

The objective of the generator is to minimize the following function: 

Eτi [logDω(s, a) ] − λH(πθ) (28) 

The discriminator network can be interpreted as a reward function 
that provides a learning signal to the policy r(s, a) = − logDω(s, a). In 
this study, the parameter θ of the policy network πθ can be updated using 
proximal policy optimization (PPO) as follows: 

Eτi [∇θlogπθ(a|s)Q(s, a) ] − λ∇θH(πθ) (29) 

Thus, the generator policy is encouraged to produce high-quality 
trajectories that mimic the expert demonstrations. Further details of 
the PPO algorithm can be found in [40]. 

3.2.3. Real-time energy scheduling with learned policy 
Upon completion of the GAIL training phase, the learned policy can 

be applied to energy scheduling tasks for the HRS. This process is 
designed to unfold into two primary stages at each time step, ensuring a 

Fig. 3. The training process of GAIL involves training an agent to imitate expert behavior. During this process, the generator (agent) and discriminator are trained 
adversarially until the actions of the agent become indistinguishable from those of the expert. 
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dynamic and responsive energy management system that adapts to real- 
time operational conditions. The first phase of energy scheduling in
volves determining the hydrogen mass flow in the electrolyzer, fuel cell, 
and compressor for FCEV refueling based on the learned policy, π*

θ. To 
facilitate this, real-time operational data are gathered, and a state vector 
is formulated for each time step t, as shown in (23). The state vector 
contains current conditions and operational status of the hydrogen 
refueling station. Utilizing this state vector, the learned policy π*

θ process 
to define the predicted action is as follows: ât = π*

θ(st) outlines the 
operational directives for the electrolyzer, fuel cell, and FCEV refueling. 
The expected action essentially encompasses the inflow and outflow 
mass flows of the HRS, as shown in (24). Following the action deter
mination, the SOP of the HSS at time step t is ascertained using (12), 
which considers the optimal inflow and outflow of the hydrogen mass to 
satisfy the FCEV refueling demand efficiently. Concurrently, the power 
exchanged with the utility grid is determined following (15) to ensure 
the energy balance in the HRS. 

With all decision variables explicitly defined, including the power 
levels for the electrolyzer, fuel cell, FCEV refueling, and utility grid, the 
system operator dispatches these values as setpoint signals. These sig
nals command the operational behaviors of the corresponding compo
nents within the HRS, ensuring operation according to the optimal 
schedule defined by the GAIL model. This process is repeated at each 
time step throughout the energy scheduling cycle, providing a system
atic and intelligent approach to energy management. By leveraging the 
desired efficiency of the learned policy, the HRS can dynamically adjust 
its operations to real-time data and conditions, optimize energy utili
zation, maximize total profit, and ensure the reliable provision of 
hydrogen fuel. 

4. Simulation results 

In this section, the feasibility of the developed methodology is vali
dated for the benchmark HRS described in Section 2. All simulations are 
conducted using Python on a Mac Studio with an Apple M1 Max chip 
and 32 GB of RAM. Energy scheduling is performed over a 24-h period 
with a time step of 1 h. 

4.1. Simulation setup 

4.1.1. Input data 
The HRS under study comprises a PV panel and a hydrogen chain 

connected to the utility grid. Table 2 lists the data related to the 
hydrogen chain, including the electrolyzer, fuel cell, compressor, and 
hydrogen storage tank, which are obtained from [22]. The power 
exchanged between the utility grid and the HRS is limited to 500 kW. In 
the proposed simulations, the datasets used as inputs for training and 
testing include the time-series data of the hourly electricity prices 
(λGrid,buy

t ), PV generation (pPV
t ), and FCEV demand (gFCEV

t ), as shown in 
Fig. 4. These data are collected from real data or generated using 
different approaches. These datasets closely resemble real-world sce
narios, ensuring simulation applicability and reliability. Gaussian noise 

is injected into a nominal scenario based on historical data from the PJM 
FE Ohio system on November 2nd, 2019, to simulate electricity price 
uncertainty. The Gaussian noise level of the electricity price is set to 
10%. The selling price (λGrid,sell

t ) is assumed to be 0.8 times the buying 
price (λGrid,buy

t ). The expected power output of a PV array of 250 kW is 
defined based on the solar irradiance and temperature extracted from 
the European Commission database in Madrid (Spain) from January 1st, 
2015, to December 31st, 2018. 

Because of the limited availability of FCEV demand data, the 
scenario-based generation approach is applied using the probability 
distribution functions of two essential factors of an HRS: (1) the total 
number of refueling events in one scheduling scenario and (2) the 
amount of hydrogen refueled for a single refueling event. Table 3 pre
sents the data related to the distribution of FCEV refueling demand. 
Fig. 5 depicts the percentage variation in FCEV refueling demand, pre
sented as a percentage of the total number of refueling events occurring 
within a day [41]. The data in Table 3 and Fig. 5 are provided by the 
National Renewable Energy Laboratory (NREL) [42]. Based on these 
data, a Gaussian distribution is used to generate 821 scenarios for hourly 
FCEV demand profiles, as shown in Fig. 4(c). Moreover, a refueling price 
(λFCEV) of 4 $/kg is considered. 

4.1.2. Data analysis 
This subsection provides a concise analysis of the input data used in 

HRS energy management. The boxplots in Fig. 6 illustrate the distribu
tion of energy price, PV generation, and FCEV demand across different 
hours of the day. As shown in Fig. 6(a), energy prices exhibit significant 
variability throughout the day, with peaks at 7:00 and 18:00, and lower 
prices observed between 14:00 and 16:00. In Fig. 6(b), a clear pattern is 
evident for PV generation, which begins around 6:00, peaks between 
11:00 and 15:00, and tapers off by 18:00. The highest generation occurs 
at midday, reflecting the availability of sunlight and aligning with the 
natural daylight cycle. Fig. 6(c) shows that FCEV demand follows a 
distinct daily cycle, with low demand during the early morning hours 
(midnight to 6:00) and late evening (after 20:00). During these periods, 
occasional spikes in usage are observed. Demand starts to increase 
significantly from 7:00, peaking between 12:00 and 17:00. This pattern 
suggests that FCEV demand is closely tied to typical daily activities, with 
higher usage during daytime hours when people are commuting or 
traveling for work, and lower usage during nighttime when fewer trips 
are made. 

The frequency distribution of energy price, PV generation, and FCEV 
demand is shown in Fig. 7. In Fig. 7(a), most of the data points for energy 
prices are concentrated at lower levels, primarily below 0.05 $/kWh, 
with a small tail extending towards higher prices, indicating occasional 
spikes. The histogram for PV generation in Fig. 7(b) exhibits a bimodal 
distribution. Many data points are clustered around zero, reflecting 
numerous instances of minimal or no power generation, likely during 
nighttime or periods of low sunlight. There is also a significant peak 
around 250 kW, indicating high PV generation during peak sunlight 
hours. As shown in Fig. 7(c), the histogram for FCEV demand displays a 
right-skewed distribution, indicating that low to moderate demand is 
common, with high demand occurring less frequently. The demand 
peaks around 2–4 kg, with fewer instances of very high demand. 

Fig. 8 is a heatmap that displays the correlation coefficients between 
state and action variables in HRS energy management. The correlation 
analysis justifies the selection of these state and action variables. The 
chosen state variables capture essential factors influencing energy 
management, including temporal, economic, renewable energy, and 
demand aspects. The action variables, representing the hydrogen mass 
flow of the electrolyzer, fuel cell, and FCEV refueling, are critical for 
making informed decisions about hydrogen production, power genera
tion, and refueling. The strong correlation between state and action 
variables is crucial for effectively training the GAIL agent to make 
optimal decisions in HRS operations. 

Table 2 
Data of the proposed HRS.  

Parameter Value Parameter Value 

p EZ/pEZ 25/400 kW vHSS 200 m3 

p FC/pFC 25/400 kW θHSS 313 K 
ηEZ/ ηFC/ ηComp 0.65/ 0.77/ 0.8 p.u. γ 0.0001 
kEZ/ kFC 8.5/ 32 $/kW R 8.314 J/K mol 
TEZ/ TFC 10,000 h ζ 0.002 kg/mol 
μEZ/ μFC 0.03 $/kWh ψ 0.0006%   

LHV 39.72 kWh/kg   
ςComp 2.7 kWh/kg   
SOP HSS/SOPHSS 2/10 bar  
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4.1.3. Network architecture, hyperparameter tuning, and training analysis 
The proposed GAIL algorithm is implemented using the Stable- 

Baselines3 [43] and imitation [44] libraries, with the PPO algorithm 
serving as the learner model. GAIL comprises a policy network (actor), 
value network (critic), and discriminator network. The policy network 
includes two linear layers with 256 neurons each, activated by ReLU 
functions. The final layer, a linear activation function, outputs action 
probabilities corresponding to the three possible actions in the envi
ronment. The critic network, similar to the actor network, also has two 
hidden layers but concludes with a single neuron in the output layer, 
which represents the estimated state value. The discriminator network, 
designed as a reward neural network, comprises two hidden layers with 
32 neurons each, utilizing ReLU activation functions. The output layer of 
the discriminator network employs a sigmoid activation function to 

produce a probability value that serves as a discounted reward. 
To optimize model performance, extensive hyperparameter tuning 

for the GAIL algorithm is conducted using the Optuna hyperparameter 
optimization framework [45]. This framework allows for an efficient 
and systematic search for optimal hyperparameters. Each set of hyper
parameters is evaluated based on the cumulative reward obtained in the 
test scenarios, with evaluations conducted every 600,000 timesteps and 
two evaluations per trial. A total of 100 trials are conducted, allowing 
Optuna to explore a broad range of hyperparameter combinations. 
Table 4 summarizes the tuned hyperparameters for GAIL training and 
their optimal values as identified through the optimization process, with 
some hyperparameters kept at their default values as specified in the 
imitation library. 

Fig. 9 illustrates the training curve of the tuned agent during the 
GAIL training process. Initially, the mean reward is low but increases 
steadily over the first training steps, indicating effective learning from 
the expert trajectories. As training progresses, the average reward rises 
rapidly before stabilizing, signifying significant improvement and 
convergence towards the expert policy. The learning curve without 
significant fluctuations, suggests stable training and well-tuned 
hyperparameters. 

4.2. Real-time energy scheduling performance of the proposed GAIL 

After offline training, the learned policy can provide scheduling 
decisions for the optimal operation of the HRS based on the real-time 
state. Accordingly, the developed GAIL is tested under 91 scenarios. 
Table 5 presents the simulation results for all test scenarios obtained by 
the developed GAIL algorithm. Table 5 also lists the results of day-ahead 
MILP, which is a practical approach to solving problem P1 through 
forecasting. For clarity in comparison, the forecast vt of an actual value 
v*

t follows a normal distribution as vt ∼ N
(
v*

t , γv*
t
)
. Given the substantial 

stochastic variability, the parameter γ escalates steadily from 0.2 at t = 1 
to 0.5 at t = T, as proposed in [46]. The results in Table 5 show that the 
system profitability is higher when applying the scheduling strategy 
given by GAIL, leading to an improvement of 29%. In the base case, the 
FCEV demand is met by a maximum of 96%, whereas the proposed al
gorithm can satisfy 91% of the FCEV demand owing to the scale of the 
HRS; however, the proposed GAIL still yields higher profits than the day- 
ahead MILP. Instead of passively buying electricity from the utility grid 
to fill the HSS and fully meet the FCEV demand, the HRS flexibly buys or 
sells electricity at different times to maximize profits. 

Fig. 10 depicts the revenue for five scenarios with increasing FCEV 
demand. Total profit is determined according to (17)–(20), which takes 
into account revenue from FCEV refueling and selling energy and de
ducts the costs of purchasing electricity and maintaining electrolyzers 
and fuel cells. From Fig. 10, there is a clear upward trend in the total 
profit and FCEV refueling revenue as the total FCEV demand increases. 

Fig. 4. Dataset for training and testing: (a) Energy price, (b) PV generation, and (c) FCEV demand. The dataset has a total of 821 scenarios, with 730 training 
scenarios and 91 testing scenarios. 

Table 3 
Data of FCEV refueling demand distribution.   

Mean Standard deviation Min Max 

Number of refueling events 30 5 – – 
Fueling amounts per event (kg) 2.93 1.9 0.7 6.95  

Fig. 5. Percentage variation of FCEV refueling demand during a day. Data is 
shown as a percentage of the total refueling events occurring over a day. 
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Fig. 6. Boxplot of hourly distribution: (a) Energy price, (b) PV generation, and (c) FCEV demand.  
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However, the revenue from selling energy decreases significantly in 
scenarios with a higher FCEV demand. When FCEV demand is low, 
selling energy through a fuel cell is the main revenue stream, along with 
FCEV refueling. However, when the FCEV demand increases, most of the 
hydrogen in the storage tanks is devoted to meeting the FCEV refueling 
demand, significantly reducing hydrogen-to-power conversion of fuel 
cells. Therefore, the proposed GAIL can provide effective energy 
scheduling strategies for different scenarios, which can economically 
benefit HRS. 

4.3. Energy scheduling via GAIL in a specific scenario 

A scenario is selected randomly from the testing dataset to confirm 
the feasibility of the GAIL algorithm. Fig. 11 presents the data for the 
selected scenario, including the energy price, PV generation, and FCEV 
demand. 

Fig. 12 shows the scheduling results for a random scenario, demon
strating HRS operations including the power-to‑hydrogen function of 

Fig. 7. Distribution histograms of input data: (a) Energy price, (b) PV generation, and (c) FCEV demand. The histograms for energy price and FCEV demand show 
highly skewed distributions, whereas the PV generation histogram shows a bimodal distribution. 

Fig. 8. Heatmap of the correlation matrix for state and action variables in HRS 
energy management (warmer colors indicate positive correlations and cooler 
colors indicate negative correlations). 

Table 4 
Search space and optimal values for the GAIL hyperparameters.  

Hyperparameter Search space Optimal 
value 

Batch Size [8, 16, 32, 64, 128, 256, 512] 64 
Number of Steps [512, 1024, 2048] 2048 
Gamma [0.9, 0.95, 0.98, 0.99, 0.995, 

0.999, 0.9999] 
0.99 

Learning Rate [1e-5, 1] (log scale) 0.0003 
Entropy Coefficient [0.00000001, 0.1] (log scale) 0.01 
Clip Range [0.1, 0.2, 0.3, 0.4] 0.2 
Number of Epochs [1, 5, 10, 20] 10 
GAE Lambda [0.8, 0.9, 0.92, 0.95, 0.98, 0.99, 

1.0] 
0.95 

Max Gradient Norm [0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 
5] 

0.5 

Value Function Coefficient [0, 1] 0.5 
Demo Batch Size – 1024 
Generator Replay Buffer 

Capacity 
– 512 

Number of Discriminator 
Updates per Round 

– 8  

Fig. 9. Reward convergence curve in the GAIL training process. The mean 
reward starts low, increases steadily during initial training, and then rises 
rapidly before stabilizing, indicating effective learning and convergence to
wards the expert policy. 

Table 5 
Results of the proposed GAIL and day-ahead MILP for test scenarios.  

Indicators Day-ahead MILP The proposed GAIL 

Profit ($) 16,277 20,997 
FCEV demand satisfied (%) 96.39 91.70  
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the electrolyzer, hydrogen consumption by the compressor to meet 
FCEV demand, and the hydrogen-to-power function of the fuel cell. 
Notably, the HRS is designed to prevent simultaneous operation of the 
electrolyzer and fuel cell. 

Fig. 12(a) illustrates that the electrolyzer and compressor are 
appropriately scheduled to maintain the hydrogen tank pressure at an 
acceptable level to satisfy FCEV demand. Most of the stored hydrogen is 
consumed to meet peak FCEV demand from 8:00 to 17:00. However, due 
to high selling prices at 7:00 and 18:00, hydrogen is primarily used by 
the fuel cell to generate electricity for sale back to the grid, thereby 
generating profit. This demonstrates that an HRS can function as an 
electricity generator. The hydrogen stored in the tank can thus be 
managed to supply either FCEV demand or fuel cells, based on real-time 
data of refueling demand and energy prices, to maximize revenue. 

Fig. 12(b) illustrates the operations of various components in the 
HRS, with positive values indicating energy consumption or HRS-to-grid 
flows, and negative values indicating energy generation or grid-to-HRS 
flows. The power exchanged with the grid, as well as the energy 
consumed/generated by the electrolyzer, fuel cell, and compressor, 
remain within the allowable range throughout the scheduling horizon. 
In conclusion, the proposed GAIL algorithm effectively coordinates HRS 
operations to optimize system profit while satisfying all operational 
constraints. 

4.4. Performance evaluation and comparison 

A comparative analysis of the proposed GAIL, DDPG [47], PPO [40], 
TRPO [48], and SAC [49] is conducted to further prove their effective
ness in the proposed GAIL in HRS energy management. In this study, the 

performance of an algorithm in real-time energy scheduling is evaluated 
using a performance error for the nth scenario, which is defined as 
follows: 

Jgap =
Jexpert

n − Jn

Jexpert
n

(30)  

where Jexpert
n and Jn are the profits achieved by the expert and proposed 

methods for the nth scenario, respectively. Performance errors are used 
to assess the total costs accumulated across all test scenarios. 

The expert approach addresses the problem using a day-ahead 
deterministic MILP optimization model, where all necessary forecast 
data for the entire scheduling cycle, including energy price, solar irra
diation, and FCEV refueling demand, are assumed to be known precisely 
in advance. Consequently, the results obtained by this method represent 
the best possible solutions and serve as a baseline for comparison. 

A comparison of the model performances of the GAIL and other al
gorithms is presented in Table 6. Among the considered algorithms, the 
GAIL significantly outperformes the other algorithms. Regarding the 
performance error, the GAIL achieves an average of 1.81% and a cu
mulative cost of 1.72% across all test scenarios. In contrast, DDPG and 
PPO are the second-best algorithms that achieve the closest performance 
to the GAIL algorithm, with 3.27% and 3.86% on average and 3.07% and 
3.87% for the cumulative cost, respectively. 

Moreover, the GAIL algorithm demonstrates stable performance with 
a low standard deviation of the performance error (only 1.09%). The 
findings in Table 6 are further validated by comparing the boxplots of 
performance errors for these algorithms, as shown in Fig. 13. The 
developed GAIL exhibits the lowest mean performance error, indicated 
by the central line in the boxplot. Additionally, the interquartile range, 
represented by the height of the box, is relatively narrow for the GAIL 
algorithm, indicating lower variability in the performance error. 
Therefore, the effective generalization ability and robustness of the 
proposed GAIL are confirmed across different scenarios. This indicates 
that the GAIL algorithm can effectively control the operation of an HRS, 
achieving near-optimal profit in a given scenario without violating any 
constraints. 

4.5. Detailed analysis of energy scheduling strategies 

In this section, a comprehensive comparison is conducted to evaluate 
the energy scheduling decisions provided by different methods. The 
same test scenario used in Section 4.3, with data depicted in Fig. 11, is 
chosen for consistency. Fig. 14 illustrates the actions of various algo
rithms, including TRPO, SAC, PPO, DDPG, and the proposed GAIL, 
compared to the expert policy. As mentioned, the decisions from the 
expert policy represent the best possible results, serving as a benchmark 
to assess the performance of other methods. 

The electrolyzer is crucial for the efficient operation of an HRS, as it 
converts electricity into hydrogen for storage in tanks. Fig. 14(a) 

Fig. 10. Revenue from different sources for five scenarios with gradually 
increasing refueling demand. Higher FCEV demand increases total profit and 
refueling revenue but reduces energy selling revenue due to increased hydrogen 
allocation for refueling. 

Fig. 11. Testing data for a selected scenario: (a) Energy price, (b) PV generation, and (c) FCEV demand.  
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visually depicts the scheduling decisions of the electrolyzers. It can be 
observed from Fig. 14(a) that the decisions made by agents trained with 
different algorithms deviate from the expert decisions, which can be 
attributed to inevitable errors in model training. Despite these de
viations, the agent trained with GAIL exhibits behavior that more closely 
aligns with the expert policy compared to other algorithms. The differ
ence is most pronounced between 1:00 and 6:00, where GAIL demon
strates high accuracy in capturing the expert policy, while the other 
algorithms show significant deviations. Similar conclusions can be 
drawn from the fuel cell scheduling decisions shown in Fig. 14(b), where 
the actions of GAIL are almost identical to those of the expert policy. 
Although other algorithms capture the general trend of the expert de
cisions, they still exhibit notable discrepancies from the optimal de
cisions. The schedules for FCEV refueling provided by different 
algorithms are relatively consistent across most time slots, as shown in 
Fig. 14(c). However, the most significant difference occurs at 18:00, 

when GAIL closely follows the expert policy, while other methods are 
less effective during this period. The SOP of the HSS over the scheduling 
horizon is depicted in Fig. 14(d), indicating that GAIL effectively learns 
and mimics the optimal operations of the hydrogen chain, making it the 
most accurate algorithm among those compared. 

For a quantitative comparison, the proposed GAIL yields a total 
profit of $215.04 for the selected scenario. In contrast, the total profits 
achieved by TRPO, SAC, PPO, and DDPG are $210.36, $208.58, 
$211.29, and $213.08, respectively. Compared to the expert policy, 
which achieves a total profit of $216.91, all five algorithms demonstrate 
effectiveness with acceptable gaps, highlighting their good generaliza
tion ability. Notably, the proposed GAIL achieves the highest profit 
among the data-driven approaches, which is relatively close to the 
theoretically optimal result of the expert policy, with a gap of only 
0.86%. In summary, the comparison highlights the superior perfor
mance of the proposed GAIL in mimicking the expert policy, particularly 
regarding scheduling accuracy and cost efficiency. The consistent and 
accurate performance of GAIL across different components of the HRS 
underscores its effectiveness in HRS energy management. 

5. Conclusion 

This study developed a new real-time energy scheduling model based 
on the GAIL algorithm for HRS energy management. The proposed al
gorithm uses adversarial training in policy and discriminator networks 
to mimic expert decision-making processes by directly learning opera
tional strategies from expert demonstrations. To achieve this, expert 
trajectories are constructed through a sequential collection of state- 
action pairs, derived by solving a pre-defined optimization problem 
using a MILP solver with historical data. These expert trajectories are 
then fed into the discriminator in GAIL during the training phase. The 
reward output of the discriminator guides the agent towards actions that 
enhance performance. Extensive simulations were conducted on a 
benchmark HRS to evaluate the feasibility of the proposed method. The 
model also enables hydrogen-to-power conversion via a fuel cell to sell 
energy, serving as an optimal supplement to FCEV refueling, particularly 
as a primary economic venture during periods with few refueling events. 
The GAIL algorithm increases system profit by closely imitating expert 
operational strategies, with a total profit increase of 29% compared to 
the day-ahead MILP strategy. Comparisons between GAIL and other DRL 
algorithms show that GAIL surpasses DDPG, PPO, TRPO, and SAC, 

Fig. 12. Scheduling results obtained by GAIL method: (a) Inflows and outflows 
of hydrogen chain, (b) Operations of various components in the HRS. A positive 
value indicates energy consumption or HRS-to-grid flows, while a negative 
value indicates energy generation or grid-to-HRS flows. 

Table 6 
Comparisons of the different algorithms for test scenarios.  

Algorithm Performance 
error for each 
scenario (%) 

Performance error for cumulative cost 
(%) 

Average Std. 

TRPO 4.29 1.62 4.28 
SAC 4.33 1.74 4.40 
PPO 3.86 1.56 3.87 
DDPG 3.27 2.19 3.07 
The proposed GAIL 1.81 1.09 1.72  

Fig. 13. Comparison of performance errors of five algorithms across 91 test 
scenarios, presented in a boxplot. The horizontal line indicates the average 
value for each algorithm. GAIL (blue) exhibits the lowest median performance 
error and smallest interquartile range, indicating consistent and superior per
formance. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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demonstrating its superior performance and adaptability in new, unseen 
scenarios. Thus, the proposed GAIL algorithm shows great potential as a 
real-time energy management tool for HRS. 

Despite the effectiveness of the proposed GAIL, this study has certain 
limitations. This study does not consider the integration and coordina
tion of HRS with the active distribution network. Additionally, the focus 
is solely on the economic aspects of HRS, overlooking technical aspects 
such as battery degradation and grid component failures to simplify the 
model. Future research should aim to expand the energy management 
model to include coordination with the distribution network. Further
more, the generalized performance and robustness of GAIL need to be 
enhanced to adapt to more complex and large-scale systems. 
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