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A B S T R A C T   

The decarbonization of electric power systems plays a critical role in global endeavors to mitigate climate change 
and facilitate the transition towards a sustainable energy future. In this context, green hydrogen has emerged as a 
promising and nascent clean energy solution, showing substantial potential for addressing the prevailing energy 
and environmental challenges on a global scale. This paper proposes an integrated energy hub (IEH) operational 
model to produce green hydrogen from biomass. This model includes renewable photovoltaic and wind sources, 
biomass electrolyzers, batteries, and hydrogen storage systems (HSS). To effectively manage the uncertainties 
stemming from renewable sources, electricity and hydrogen demand, and energy prices, an Information Gap 
Decision Theory-based normalized weighted-sum (IGDT-NWS) approach is proposed. For the first time, this 
approach solves multi-objective problems with operation costs, carbon emissions, and the energy export index 
while accounting for uncertainties to mitigate adverse impacts. The planning obtained for IEH with a risk-averse 
strategy, where the critical deviation factor is 0.1, is robust against the maximum prediction error of electricity 
demand, hydrogen demand, the output of PV and WT, and the electricity price of 5 %, 1.24 %, 10 %, 7.06 %, and 
17.2 %, respectively. With a risk-seeker strategy, our proposed method can optimistically reduce operation cost 
by 10 % with the deviation of 4.83 %, 5.86 %, 10 %, 0 %, and 5 %, respectively. Moreover, this study emphasizes 
the potential benefits of integrating HSS into the battery energy storage system (BESS). The results show that the 
proposed model decreases IEH operation cost by 35.29 %, reduces environmental impact by 33.37 %, and im
proves EEI by 71.6 %, compared with using BESS only.   

1. Introduction 

1.1. Background 

Currently, countries worldwide strive to achieve ambitious climate 
targets and transition to sustainable and low-carbon systems, priori
tizing decarbonizing the energy sector [1]. A multigeneration system 
called an integrated energy hub (IEH) allows for the production, trans
mission, storage, and consumption of various energy carriers to satisfy 
various requirements [2,3]. The IEH demonstrates its environmental 
friendliness by frequently harnessing renewable energy sources to fulfill 
energy requirements, thereby contributing to sustainability in energy 
generation. Using energy storage systems for efficient energy supply 
management can help balance energy production and demand. In 

addition, energy storage systems can facilitate the utilization of 
renewable energy sources and increase the flexibility of energy hubs 
[4–6]. Alternatively, the surplus energy can be transformed into alter
native forms, for instance, through electrolysis, to produce hydrogen, 
which can subsequently be traded in the hydrogen market (HM) to 
enhance profit. Hydrogen is a promising source of clean fuel and in
dustrial feedstock. The prevailing global method of H2 production relies 
heavily on fossil fuel sources such as natural gas, coal, and crude oil [7]. 
This approach significantly increases carbon dioxide emissions, esca
lating atmospheric greenhouse gases and aggravating global warming. 
Increasing decarbonized green hydrogen, produced by electrolysis using 
renewable resources, can significantly reduce industrial production 
processes and electricity generation emissions. Electrolysis of biomass, a 
rising and potential technology, can produce hydrogen by replacing the 
energy-demanding oxygen (O2) production process in water electrolysis 
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with the thermodynamically advantageous oxidation of biomass. This 
replacement significantly reduces electrical consumption, rendering 
biomass electrolysis an increasingly energy-efficient substitute for 
traditional power-to-gas (P2G) methods [8]. Achieving sustainable cities 
requires strategically utilizing renewable energy sources, effectively 
converting waste into energy, reducing emissions, and enhancing reli
ability. IEHs play a crucial role in this endeavor by integrating renew
able sources, such as solar, wind, and biomass, to meet consumer energy 
demands. Consequently, ensuring the optimal operation of these 
renewable-integrated energy hubs is crucial for driving sustainable 
urban development. 

1.2. Literature review 

Currently, more than 98 % of hydrogen (H2) production originates 
from nonrenewable resources [9]. The primary methods employed are 
natural gas steam methane reforming (SMR), which is responsible for 76 
% of worldwide production, and coal gasification, which contributes 22 
%. Hydrogen production by water electrolysis is a mature technology 
[10,11], and its efficiency exceeds 70 % [12]. Alkaline electrolysis (AEL) 
technology has been used for over a hundred years, making it the most 
established technology [13]. It is also the most cost-effective option with 

the lowest initial investment and maintenance costs. However, AEL has 
a limited load range of approximately 20–25 % owing to the potential 
danger of an explosive mixture that may occur from cross-contamination 
of the gas streams produced. Zeb et al. proposed a novel concept for 
electrocatalytic water splitting involving hydrogen production through 
hydrogen evolution and polyoxometalates (POMs) [14]. Renewable 
energy sources can be used to decompose water molecules into hydrogen 
and oxygen through electrolysis. The produced hydrogen can then be 
transported to various locations using pipelines, trucks, or ships [15]. 
Additionally, it has the potential for sale in the HM. Hydrogen shows 
excellent potential as a flexible and emission-free energy option and 
contributes considerably to a sustainable and eco-friendly future. Green 
H2 generation via biomass electrolysis is a promising and efficient 
alternative [16]. Oh et al. [17] used phosphomolybdic acid as a catalyst 
for the oxidative depolymerization of biomass and an electron mediator 
redox couple of Fe3+/Fe2+ at a much lower potential. This method 
enables cost-effective hydrogen production with near-perfect faradaic 
efficiency at low pH levels. Additionally, it offers economic advantages 
through product generation. Yao et al. studied CO2-neutral H2 pro
duction processes through dual fluidized bed (DFB) biomass steam 
gasification. Their simulation results indicated that the DFB biomass 
steam gasification process had a high H2 conversion rate (51.4 %) [18]. 

Nomenclature 

Abbreviations 
AEL alkaline electrolysis 
BCS battery charging stations 
BESS battery energy storage system 
CHP combined heat and power 
DFB dual fluidized bed 
EEI energy export index 
EH energy hub 
G2I grid-to-IEH 
H2 hydrogen 
HM hydrogen market 
HSS hydrogen storage system 
I2G IEH-to-grid 
IEH integrated energy hub 
IGDT-NWS Information Gap Decision Theory-based normalized 

weighted-sum 
LEC local energy community 
MILP mixed-integer linear programming 
NWS normalized weighted-sum approach 
O2 oxygen 
OECD Organisation for Economic Co-operation and Development 
OER oxygen evolution reaction 
P2X power-to-X 
PEM proton exchange membrane 
POM polyoxometalate 
PV photovoltaic 
RES renewable energy source 
SMR steam methane reforming 
SOC state of charge 
SOE state of energy 
WT wind turbine 

Parameters and variables 
Ac surface area of the electrode 
a1/a2 parameters associated with the ohmic resistance 
DODBESS BESS depth of discharge 
F Faraday constant 
Hdemand

t hydrogen demand at time t 

HHSS
t H2 storage volume at interval t (kg) 

HHSS lower and upper capacity limits of HSS 
Ic
t electrolysis current at interval t (A) 

MH2 molar mass of H2 
melz

t ,mHSS
t hydrogen production rate, output of HSS at interval t (kg) 

Nc the number of series cells 
Pelz

t power consumptions of electrolyzer stack at interval t 
PG2I

t power purchased from the grid at interval t (kW) 
PI2G

t power sold back to the grid at interval t (kW) 
PG2I maximum power can be purchased from grid 
PI2G maximum power can sold to grid 
PPV

t ,PWT
t outputs of PV and WT at interval t (kW) 

PBESS,ch BESS charging power at interval t (kW) 
PBESS,dis BESS discharging power (kW) 
PBESS,ch,PBESS,dis BESS charging/discharging rate (kW) 
QH2 heating value of hydrogen (kWh/kg) 
T number of time slots 
uc

t ,uelz
t electrolyzer cell voltage, electrolytic stack voltage at 

interval t (V) 
uG2I

t binary variable – 1 if IEH purchases power from grid; 
otherwise 0 

uI2G
t binary variable – 1 if IEH sells power to grid; otherwise 0 

uBESS,ch binary variable – 1 if BESS is charging; otherwise 0 
uBESS,dis binary variable – 1 if BESS is discharging; otherwise 0 
vrated,vcut in,vcut out rated wind speed, cut in and cut out wind speeds 

(m/s) 
ΔGbio free Gibbs energy of the biomass electrolysis 
Δτ time step (hour) 
εBESS

t BESS state of energy at interval t 
εBESS maximum SOE of the BESS 
εHSS

t HSS state of energy at interval t 
ε HSS,εHSS minimum and maximum SOE of the HSS 
λ̃t forecast data at interval t 
ηelz electrolysis efficiency 
ηPV conversion efficiency of the solar PV system 
ηBESS BESS charge/discharge efficiency 
υt solar irradiance at time interval t  
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Production of H2 via biomass electrolysis offers several advantages over 
water electrolysis. This electrochemical process employs a biomass 
oxidation reaction instead of the oxygen evolution reaction (OER) used 
in water electrolysis, thereby reducing the oxidation overpotential and 
electricity consumption [1]. As RESs continue to be installed in energy 
systems, there is a need to curtail excess power generation to maintain 
system reliability. The IEHs can utilize this redundant energy to power 
biomass electrolysis for H2 production, reduce electricity purchase 
costs, and maximize the use of underutilized RESs. Thus far, limited 
research has been conducted on incorporating green hydrogen produc
tion from biomass as a substitute for natural gas-based hydrogen pro
duction in IEH. 

In recent years, an increasing number of related research studies 
have been conducted owing to the crucial role of IEH development [20]. 
In [2], an IEH that utilized natural gas to produce electricity and heat to 
reduce operational costs was optimized. Depreciation has been consid
ered for the components of the IEH during scheduling time, such as 
combined heat and power (CHP) units, heat generation units, and power 
generation units. Alizad et al. [21] investigated the economic and 
technical feasibility of designing P2G-IEH systems under future market 
conditions. The proposed planning method for the P2G-EH system is a 
stochastic dynamic planning method that considers the reliability con
straints and models the system uncertainty parameters using a scenario- 
based stochastic method. An operational strategy for an off-grid hybrid 
hydrogen/electricity refueling station was proposed [22] to maximize 
profits from supplying electricity/hydrogen to battery electric vehicles 
and hydrogen fuel cell vehicles. Sorrenti et al. [23] studied how the ratio 
of renewable energy sources to electrolyzers used to produce hydrogen 
in a P2X system connected to a grid can impact the P2X economy and 
carbon emissions. Wenkai Dong et al. proposed a planning model for an 
IEH with a power grid, gas network, and energy hubs [24]. The goal is to 
minimize the operational fuel and investment costs through carbon 
capture and bidirectional energy exchange. Their planning model, 
which did not consider bidirectional energy exchange, resulted in a 
13.47 % annual cost savings compared with the baseline scenario. Luo 
et al. [25] discussed the optimal scheduling of a district energy system 
with multiple energy supply modes and flexible loads. The IEH model 
included an energy storage system and an integrated electric vehicle. 
This study proposes an optimal scheduling strategy to minimize the 
multi-energy purchase and emission tax costs. In [26], the IEH model 
analyzed energy level matching and balance between sources and loads 
to increase economic efficiency. The two-level planning model opti
mizes the system structure and component sizing, whereas the lower- 
level model identifies the optimal operation strategy. A global sensi
tivity analysis was used to evaluate the uncertainties. A Beijing case 
study is used to illustrate the methodology. Luo et al. [27] used a hier
archical Stackelberg game to schedule the energy in a three-tier IEH. 
This hub includes electricity and natural gas firms, smart energy hubs, 
and users. Multi-time scale coordinated optimization is proposed, which 
uses multi-energy flows and multi-type energy storage systems to opti
mize scheduling plans for variable energy resources and load demands 
[28]. It includes day-ahead economic dispatch, local intraday receding- 
horizon optimization, and real-time adjustment to minimize the daily 
operation costs of the IEH. Liu et al. [29] proposed a zoning planning 
method based on the energy hub model and a directed acyclic graph that 
can solve regional IEH planning problems without a fixed system 
structure. This method jointly plans the system structure and equipment 
configuration, improves computational efficiency, and reduces the total 
annual cost. Chamandoust et al. developed a method to optimize intel
ligent IEH system scheduling for cost and emission reduction while 
maintaining the energy supply probability and optimal load levels [30]. 
They used demand-side management to shift loads and Monte Carlo 
modeling for renewable energy sources and loads. Miao et al. [31] 
proposed IEH model uses renewable sources such as wind and solar 
power for cooling, heating, and electricity. It manages energy flow, uses 
storage devices, and aims to reduce costs and CO2 emissions. Yiyang 

Qiao proposed a solution to the problems of low efficiency and energy 
waste caused by neglecting the impact of the energy equipment type and 
configuration [32]. The solution is a multi-objective optimization 
method based on the IEH, which focuses on the configuration of gas 
turbines. The method establishes a multi-objective optimization model 
that determines the equipment installation configuration and operation 
strategy while considering the economic, energy consumption, and 
environmental benefits. Kuan Zhang et al. developed a model for a 
multi-energy trading framework for a hybrid-renewable-to-H2 provider 
(HP) capable of converting hybrid renewable energy sources into 
hydrogen (H2) and trading both H2 and electricity [33]. This framework 
aims to efficiently utilize renewable energy resources (RESs) while 
enabling HP to profit from both markets. By utilizing biomass electrol
ysis and electrochemical effects, the HP can produce green H2 from 
hybrid RESs and benefit from the flexibility of the electricity-H2 con
version. In general, IEH optimization aims to reduce costs and emissions. 
Research on balanced solutions that consider economic, technical, and 
environmental aspects is limited. Some studies have tackled IEH with 
multiple objectives but have yet to consider the bidirectional energy 
exchangeability of IEH and uncertainty factors. 

In some studies, uncertainty parameters have been used to solve the 
power and energy systems. Orozco et al. developed a scheduling strategy 
with a single objective for a local energy community (LEC) based on the 
alternating direction of multipliers [34]. The authors included intraday 
operation coordination with day-ahead decisions and a scenario-based 
approach to account for uncertainties in renewable sources. Zhang 
et al. [35] proposed a model for managing grid-connected flexible en
ergy hubs, which include electrical and heating networks. The goal is to 
minimize operating costs while considering demand, energy prices, and 
renewable power uncertainties by using the transformation method. In 
[36], a scheduling model was developed for prosumers in the energy 
community. This model uses a stochastic-robust approach to handle 
uncertainties arising from energy transactions with a utility grid, com
munity, or peers. Different uncertainty models address the heterogene
ity of these unknown parameters to improve economic efficiency. 
Robust formulations were used for predictable parameters, whereas 
scenarios were used for highly volatile uncertainties. Norouzi et al. [37] 
proposed the flexible power management model to minimize the dif
ference between the expected energy cost and the expected profit for a 
networked microgrid (MG) with renewable energy sources (RESs) and 
flexibility sources. Stochastic programming is used to model uncertain 
parameters. Arsalan Najafi et al. presented a hybrid stochastic-robust 
approach for optimizing short-term hydrogen-based EH by efficiently 
managing energy procurement to meet demands [38]. Stochastic pro
gramming handles demand uncertainties, whereas robust optimization 
addresses regulatory market price uncertainty. In [39], a new bi-level 
multi-objective model was developed to optimize microgrid flexibility. 
Demand, energy price, maximum active renewable generation, and the 
electric vehicles (EVs) parameters are modeled using hybrid stochastic- 
robust optimization. Pirouzi proposed an optimal energy management 
model in a virtual power plant (VPP) [40]. Uncertainty in the system and 
VPP loads, day-ahead market prices, and wind farm power generation 
are considered by using hybrid stochastic-robust scheduling. Stochastic 
methods that are based on risk offer advantages over deterministic 
methods and scenario-based optimization approaches by considering 
uncertain variables and providing more comprehensive results. Infor
mation Gap Decision Theory (IGDT), an alternative method, can over
come the limitations and shortcomings of other methods because prior 
knowledge of uncertain parameters is not required. Tostado-Véliz et al. 
[41] proposed a single-objective optimization model using IGDT to 
create a scheduling program that considers uncertainty to reduce the 
adverse effects of uncertain variables, such as renewable energy output, 
demand, and energy prices. A newly proposed model to improve unit 
commitment in EHs with electric, thermal, and cooling demands was 
developed in [42]. The model integrates different storage systems, 
combined heat and power (CHP) units, boilers, electric chillers, 
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absorption chillers, photovoltaic (PV) modules, wind turbines (WT), and 
battery charging stations (BCS). The model uses the IGDT to schedule 
day-ahead EH operations from risk-neutral, risk-averse, and risk-seeking 
perspectives. The model also considers the uncertainties related to 
electricity demands, BCS demand, heat demand, cooling demand, PV 
and wind power outputs, and electricity prices. Tafreshi et al. developed 
a new model for the optimal operation of an IEH that includes various 
components such as RESs, plug-in hybrid electric vehicles (PHEVs), fuel 
cell vehicles, fuel cells, electrolyzers, hydrogen tanks, boilers, inverters, 
rectifiers, and heat storage systems [43]. This model uses risk-averse and 
risk-seeking strategies to incorporate the uncertainty associated with the 
PHEV power consumption during trips. In [44], a new model for 
generating electrical power was proposed using Reverse Osmosis tech
nology and an Organic Rankine. It includes a parking lot, battery 
swapping station, electrolyzer, hydrogen tank, and fuel cell to balance 
the hydrogen production and consumption. The model was evaluated on 
a commercial building on Qeshm Island using scenario generation and 
the IGDT method to model existing uncertainties. Nasir et al. [45] focus 
on scheduling renewable energy sources for the day ahead and is con
nected to demand response aggregators. The Information Gap Decision 
Theory (IGDT) is used as a risk-aware method to handle uncertainties 
related to demand and price. A hybrid approach was created in [46] to 
address various sources of uncertainty in multi-energy microgrids. This 
hybrid model uses point estimation methods for renewable energy 
generation, IGDT for electricity demand, and stochastic programming 
for hydrogen demand from fuel cell EVs. The MILP model includes both 
a battery energy storage system (BESS) and a hydrogen storage system 
(HSS) to provide a comprehensive solution. Wang et al. [47] suggested a 
scheduling model that considered IEH participation in the carbon mar
ket, accounting for uncertainties in renewable energy and load. It in
troduces a ladder-type carbon-trading mechanism and models risk 
aversion and preferences based on the IGDT method. This model has 
both economic and environmental objectives. In [48], the confidence 
gap decision (CGD) method robustly optimized energy storage by 
incorporating chance constraints, probability confidence intervals, and 

IGDT. It maximizes voltage profile improvement while minimizing in
vestment costs and ensuring safe and efficient energy storage allocation. 
Mansour-Saatloo et al. [49] propose an optimal energy management 
strategy for a combined hydrogen, heat, and power microgrid (CHHP- 
MG) integrated with hydrogen refueling stations and electric vehicle 
parking lots. It uses a multi-objective Information Gap Decision Theory 
(IGDT)-based robust approach to handle uncertainties of RES and reduce 
operation costs. Jokar et al. [50] developed a model for planning a 
renewable energy system using wind turbines, bio-waste energy units, 
and stationary and mobile energy storage. Uncertainties in loads, 
renewable power, and energy consumption of mobile storage devices are 
addressed using robust optimization based on IGDT. A few studies have 
considered hydrogen demand uncertainty but only focused on economic 
improvement. 

1.3. Research gaps and motivation 

From a literature review perspective, many investigations have been 
conducted on modeling the IEH for singular and multiple objectives. A 
concise comparison of the optimization research on the IEH is presented 
in Table 1. According to this table, the research gap in IEH optimization 
is identified as follows:  

- Owing to the growing impact of climate change, there is an 
increasing demand for alternative methods of hydrogen production 
that align with the global trend towards transitioning to an H2-based 
society. H2 production can be accomplished using thermochemical, 
biochemical, and electrolytic methods. Methanol steam reforming 
(MSR) and P2G are widely used for on-site H2 production. However, 
methanol steam reforming utilizes natural gas as a feedstock to 
produce CO2, a greenhouse gas that contributes to climate change. 
Biomass‑hydrogen-based processes are emerging as promising op
tions for increasing the H2 production capacity. Based on electro
chemical effects, aqueous electrolysis of native biomass can be 
powered by wind and solar power to reduce power consumption and 

Table 1 
Summary of the reviewed references and the current study in terms of IEH optimization.  

Ref Objective function Biomass HSS Uncertainties Method 

Single Multi RES Load demand Energy price Hydrogen demand 

[2] ✓   ✓ ✓ ✓  ✓ Stochastic 
[22] ✓   ✓      
[23] ✓   ✓      
[24] ✓   ✓      
[25] ✓         
[26] ✓         
[27] ✓   ✓      
[28] ✓   ✓      
[29] ✓         
[30,31]  ✓        
[32]  ✓        
[33] ✓  ✓ ✓      
[34] ✓    ✓ ✓   Stochastic 
[35] ✓    ✓ ✓ ✓  Unscented transformation 
[36] ✓      ✓  Hybrid 
[38] ✓   ✓   ✓ ✓ Hybrid 
[39]  ✓   ✓ ✓ ✓  Hybrid 
[40] ✓    ✓ ✓ ✓  Hybrid 
[41] ✓   ✓ ✓ ✓ ✓ ✓ IGDT 
[42] ✓   ✓ ✓ ✓ ✓  IGDT 
[43] ✓     ✓   IGDT 
[44]  ✓  ✓  ✓   IGDT 
[45] ✓  ✓ ✓ ✓ ✓ ✓ ✓ IGDT 
[46] ✓   ✓ ✓ ✓  ✓ Hybrid 
[47]  ✓   ✓ ✓   IGDT 
[48]  ✓   ✓ ✓   Hybrid 
[49]  ✓  ✓ ✓    IGDT 
[50] ✓    ✓ ✓   Hybrid 
Present  ✓ ✓ ✓ ✓ ✓ ✓ ✓ IGDT  
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facilitate on-site hydrogen production. Therefore, integrating green 
hydrogen production systems from biomass electrolysis as an alter
native to natural-gas-based hydrogen production in the IEH optimi
zation problem should be considered.  

- Previous research on IEH has primarily viewed them as passive 
consumers, neglecting their identity as active prosumers and the 
prospects of energy sales within the market. Although a limited 
number of studies have presented all-encompassing IEH models, they 
have solely prioritized the objective of reducing operational costs. 
Currently, there is an increasing focus on reducing emissions to the 
environment in order to generate power and improve the power 
supply capacity of IEHs. A multi-objective paradigm that accounts 
for the aforementioned factors would render the IEH scheduling 
problem more comprehensive and realistic.  

- The optimization problem of an IEH has been extensively studied in 
the literature, with two main objectives: operation cost and emission. 
Given that optimization problems are inherently multi-objective, the 
IEH problem must be addressed comprehensively, considering all 
three aspects: economic, technical, and environmental. This 
approach aims to provide the operator with a solution that balances 
all the objectives. It is essential to simultaneously account for these 
objectives to avoid an unbalanced and unrealistic IEH model. Only 
some studies have addressed the IEH problem with more than two 
objectives. Still, these studies have defined the IEH as a passive load 
and an incapacity for bidirectional energy exchange.  

- The Integrated Energy Hub (IEH) domain encompasses electricity 
and other energy forms. The unpredictability of the load can be 
affected by indoor conditions, building parameters, climate, and 
social economy, among other factors. Renewable energy output is 
susceptible to environmental and weather factors. Energy prices are 
subject to transaction volume errors owing to uncertain factors, such 
as IEH load, equipment failure, and network transmission capacity. 
Previous studies have only considered day-ahead data for an IEH 
model, ignoring the uncertainty of the parameters. Some studies 
thoroughly considered the above uncertain factors but only solved 
the single-objective problem. Therefore, a risk-aware approach must 
be adopted in a multi-objective study to navigate uncertainties and 
assess their effects on the operational scheduling of IEH. 

1.4. Research contributions 

Although there have been numerous investigations into hydrogen 
production in the IEH, significant research gaps still need to be 
addressed. As listed in Table 1, IEH scheduling is used with different 
objectives and techniques. However, a holistic model has yet to be 
proposed for producing green hydrogen from RESs in a reliable way that 
meets the dynamic demands for electricity and hydrogen throughout the 
day. The requirement needs an effective technique that models its 
simultaneous uncertainties while considering the robustness and 
opportunistic aspects of the uncertain parameters and their occurrence 
states to generate a more accurate assessment of the system. These gaps 
in the current research have motivated us to propose a holistic model for 
the optimal operation of IEH in producing green hydrogen. The main 
contributions of this study are visually depicted in Fig. 1 and presented 
as follows:  

- An IEH system that uses biomass electrolysis has been proposed to 
create green hydrogen from renewable sources. This system is 
designed to be both cost-effective and environmentally friendly by 
utilizing wind and solar power to power the process. This method 
dramatically improves the efficiency of the electrolysis process, 
producing high-quality green hydrogen while reducing electricity 
consumption. This process also helps break down native biomass and 
extract electrons, resulting in a more efficient and sustainable pro
duction process.  

- The optimal operational problem for the IEH considers multiple 
objectives and uses a formulation that includes three primary func
tions: financial benefits, reduced carbon emissions, and energy 
export index. In addition, the problem was designed to analyze the 
impact of RESs and storage capacity on the IEH by simulating three 
different expansion cases. These cases include scenarios in which 
RES, BES, and HSS are unavailable. The impacts of these scenarios 
were studied in terms of the three primary objective functions 
mentioned earlier.  

- The Information Gap Decision Theory-based normalized weighted-sum 
(IGDT-NWS) approach is developed to address the multi-objective 
problem and effectively handle the uncertainties. Specifically, this 
method utilizes a fractional error model of IGDT to model the un
certainties in predicting renewable energy source output, electricity 
and hydrogen demand, and energy price. By considering both risk- 

Fig. 1. The overview of the proposed framework.  
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averse and risk-seeking strategies within the IGDT method and various 
practical scenarios, the proposed model offers a more realistic 
approach to analyzing the stochastic behavior in the IEH. The 
normalized weighted-sum approach to solve multi-objective problems 
resulted in compromised and efficient solutions in which the objectives 
were close to the ideal values. The IEH operators can consider multiple 
weighting factor options for each objective to satisfy different oper
ating requirements. The proposed algorithm was compared to a situ
ation that did not consider uncertainties and robust optimization. The 
comparison results show that considering all factors, the proposed 
IGDT-NWS method can achieve a better solution. 

1.5. Paper layout 

Section 2 focuses on problem formulation, while Section 3 describes 
the proposed IGDT. The simulation results are analyzed in Section 4, and 
concluding statements are provided in Section 5. 

2. Problem formulation 

This study aims to develop a comprehensive IEH that uses renewable 
sources for hydrogen generation through the biomass electrolyzer and 
stores energy in the BESS and HSS. The IEH can also engage in grid 
trading and sell hydrogen on the market. Fig. 2 illustrates the typical IEH 
investigated in this study, which includes the following main 
components:  

- Solar PV systems: This innovative technology harnesses the sun’s 
abundant energy to generate electricity. The system directly converts 
sunlight into electrical power through the photovoltaic effect by 
using semiconductor materials in solar panels. This clean and 
renewable energy source offers a sustainable solution, reducing the 
reliance on fossil fuels and carbon emissions.  

- Wind-turbine power system: This system consists of large blades that 
rotate when exposed to wind currents and generate mechanical en
ergy. This energy was converted into electrical power using a 
generator. Wind turbine power produces no emissions or pollutants 
during operation while reducing reliance on non-renewable 
resources. 

- Electrolyzer stack: This is the location of the electrochemical con
version process for hybrid renewable-to‑hydrogen, performed in an 
electrolysis cell with a proton exchange membrane (PEM) between a 
graphite-felt anode and a carbon cathode. Renewable electricity 
from wind and solar energy drives biomass electrolysis, producing 
hydrogen that can meet fuel demands or can be stored in a hydrogen 
storage system for later use. 

- Biomass: Biomass fuel produces renewable hydrogen through elec
trolysis by converting organic materials, such as forestry residues or 
dedicated energy crops, into native biomass powder. The produced 
hydrogen is known as green hydrogen.  

- Battery storage system (BESS): A battery storage system acts as a 
dynamic reservoir that stores excess electricity generated during 
periods of high production. The stored energy can be released during 
peak demand or when renewable sources are less active. Battery 
storage systems enhance grid stability, minimize energy wastage, 
and contribute significantly to the transition towards a sustainable 
and resilient energy ecosystem.  

- Hydrogen storage system (HSS): This system uses tanks to store the 
produced hydrogen safely. During periods of increased energy de
mand or limited renewable sources, the stored hydrogen can be sold 
to meet this demand.  

- Load: The system has two types of loads: hydrogen loads, such as fuel 
stations, and electrical loads. These loads are passive; therefore, they 
operate on a fixed schedule and cannot be effectively managed using 
an IEMS. 

Fig. 2. Schematic of the proposed IEH.  
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- Integrated Energy Management System (IEMS): This efficiently 
manages energy consumption and reliably delivers power to meet 
energy needs. The IEMS facilitates the optimization of the opera
tional timetable of diverse RESs, such as PV generation, wind tur
bines, biomass electrolyzers, BESSs, and HSSs, cohesively, ultimately 
leading to a reduction in operational expenses, mitigation of carbon 
emissions and enhancement of energy provision by the RES. 

In an intelligent energy hub, the communication network facilitates 
the exchange of information between the IEMS, utility grid, and various 
devices. The input data conveyed to the IEMS encompass the duty cycle 
and energy consumption of hydrogen and electrical load, projected en
ergy cost, state of energy of the BESS and HSS, and the anticipated 
output of the RES. Furthermore, the proposed algorithm was incorpo
rated into an IEMS to scrutinize the essential information and energy 
consumption data and optimize the device operation schedule. 
Accordingly, the IEMS dispatches control signals to all devices for 
planned operation. As an active consumer, the IEH can purchase or sell 
energy from/to the utility grid: the utility grid, RES, and storage ca
pacity of the BESS to supply electrical loads. Hydrogen from a biomass 
electrolyzer stack can be utilized at a fuel station or stored in the HSS. 
Furthermore, the surplus energy obtained from the RES and BESS can be 
sold back to the grid anytime for profit. The proposed IEH is a 24-hour 
MILP problem divided into 24 h intervals. The mathematical model and 
objectives of each IEH component are described below. 

2.1. Green hydrogen production from RES modeling 

The electrolysis process, as applied in an electrolyzer cell, facilitates 
the production of green hydrogen from RESs. The cell is designed with a 
proton exchange membrane (PEM) positioned between a graphite-felt 
anode and a carbon cathode, as shown in Fig. 3 [51,33]. The produc
tion of green hydrogen through biomass electrolysis can be powered by 
wind and solar energy through DC electric potential. The aqueous pol
yoxometalate (POM), a notable and cost-effective water-soluble molec
ular metal-oxide cluster, has been employed as a catalyst and e-mediator 

to expedite the oxidative depolymerization of biomass and e-extraction 
[17]. In the aqueous electrolyte containing polyoxometalate (POM), 
native biomass powders undergo direct oxidation to yield electrolytic 
H2 production while presenting enhanced thermodynamics at elevated 
electrolysis temperatures. The process commences with the oxidation of 
biomass by POM, forming a reduced POM complex (H-POM) at the 
anode, with water molecules serving as proton (H+) donors in the pro
cess: Biomass+ H2O+ POM→Oxidative products+ H − POM. Then, the 
reduced H-POM can be easily reoxidized at the anode surface, releasing 
e− and H+ into the electrolyte based on the reaction:H − POM→POM+

H+ + e− . Finally, the application of an electric field induces the libera
tion of H+ across the proton exchange membrane. Subsequently, the 
liberated H+unites withe− from the external circuit, forming H2 at the 
cathode side:H+ + e− →1

2H2. 
The electrolyzer cell voltage was modeled based on the temperature- 

dependent U-I relationship [1,33]. Specifically, the electrolyzer cell 
voltage uc

t is sensitive to the electrolysis temperature Tc
t and current Ic

t , as 
shown in Eq. (1). On the right-hand side of Eq. (1), the first term is the 
reversible voltage, denoting the ideal minimum energy needed to 
depolymerize biomass and generate H2. The second term is the irre
versible voltage to overcome the ohmic resistance of the electrolyte. A 
unit cell has a limited H2 output; therefore, a stack embedding sever
alNcunits in series should be built be built, which increases the elec
trolytic stack voltage uelz

t , as shown in Eq. (2). Finally, the H2 production 
rate melz

t at interval t of an electrolyzer cell can be determined by the 
electrolysis efficiency ηelz, the electrolytic stack power consumption Pelz

t , 
and the heating value of H2 QH2 , as shown in Eq. (4). The WT and PV 
units provide power for the electrolytic stack of biomass electrolysis. 
Therefore, the electrochemical model for green hydrogen production 
can be formulated as follows: 

uc
t =

ΔGbio

zF
+

a1 + a2Tc
t

Ac
Ic

t ; ∀t = 1, 2,…, T (1)  

uelz
t = Nc⋅uc

t ; ∀t = 1, 2,…,T (2) 

Fig. 3. The hydrogen production model.  
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Pelz
t = uelz

t ⋅Ic
t ; ∀t = 1, 2,…,T (3)  

melz
t =

ηelzPelz
t

QH2

; ∀t = 1, 2,…,T (4)  

where ΔGbiosignifies the alterations in the free Gibbs energy pertaining 
to the reaction of biomass electrolysis;zrepresents the quantity of 
e− transferred per one mole of H2;Frepresent the constants of Faraday;a1,

a2are parameters that are related to the ohmic resistance;Acrepresents 
the surface area of the electrode. 

Fig. 3 illustrates the RESs used to generate a green hydrogen system 
for the IEH to meet its energy requirements. The WT and PV units pro
vided power for the biomass electrolysis, ultimately facilitating green 
hydrogen production in the electrolyzer stack. The hydrogen generated 
can be conserved within the confines of a hydrogen storage tank (HST) 
to satisfy the subsequent fuel requirements of the fuel stations. 

2.2. Integrated energy hub modeling 

2.2.1. Grid modeling 
An IEH can buy or sell energy on the energy market. Constraints such 

as physical grid limits and power agreements can limit electricity trade. 
IEHs must undertake grid modeling to better understand the limitations 
and opportunities of the energy market, enabling informed decisions 
and maximum trading potential. The instantaneous power that can flow 
from/to the utility grid to/from the IEH is upper bounded, as modeled in 
Eqs. (5) and (6). Owing to limitation Eq. (7), energy cannot be purchased 
or sold simultaneously. The grid model can be formulated as follows 
[52,53]: 

0 ≤ PG2I
t ≤ uG2I

t ⋅PG2I ; ∀t = 1, 2,…,T (5)  

0 ≤ PI2G
t ≤ uI2G

t ⋅PI2G; ∀t = 1, 2,…,T (6)  

0 ≤ uG2I
t + uI2G

t ≤ 1; ∀t = 1, 2,…, T (7)  

where PG2I
t is the power purchased from the grid, PI2G

t is the power sold 
back to the grid during interval t;uG2I

t and uI2G
t are the binary variables of 

the purchase and sell modes of the IEH with the utility grid at interval t, 
respectively.PG2IandPI2Gare the maximum powers that can be purchased 
and sold between the IEH and utility grid, respectively. 

2.2.2. PV system modeling 
Practically, the electricity output of the PV setup during a defined 

intervaltcan be calculated by relying on meteorological predictions that 
offer pertinent data regarding solar irradiation, using the following 
mathematical formula [53]: 

PPV
t = υt⋅ηPV ⋅PPV ⋅Δτ; ∀t = 1, 2,…, T (8)  

where PPV
t is the PV output at interval t; υtrepresents the solar irradiance 

at time interval t; ηPV is the conversion efficiency, and PPVrepresents the 
peak PV power. 

2.2.3. WT modeling 
The analysis of the output power of a wind turbine for a specific wind 

speed (v) can be expressed as follows [54]: 

PWT
t =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 vt ≤ vcut in

vt − vcut in

vrated − vcut in
Prated vcut in ≤ vt ≤ vrated

Prated vrated ≤ vt ≤ vcut out

0 vt ≥ vcut out

(9)  

where vrated,vcut in,vcut outare the rated, cut-in, and cut-out wind speeds of 
the WT, respectively. Pratedrepresents the nominal power of the WT. 

2.2.4. BESS modeling 
IEHs often integrate BESS owing to their economic and technical 

advantages. Depending on the operation mode, a BESS can function as a 
power source or a consumer. The rated power of a BESS is the limited 
amount of power that can be charged or discharged, as shown in the 
following equation Eqs. (10) and (11) [52,53]: 

0 ≤ PBESS,ch
t ≤ uBESS,ch

t ⋅PBESS,ch; ∀t = 1, 2,…,T (10)  

0 ≤ PBESS,dis
t ≤ uBESS,dis

t ⋅PBESS,dis; ∀t = 1, 2,…,T (11)  

0 ≤ uBESS,ch
t + uBESS,dis

t ≤ 1; ∀t = 1, 2,…, T (12)  

where PBESS,ch
t and PBESS,dis

t represent the charging and discharging power 
at interval t; uBESS,ch

t and uBESS,dis
t are the binary variables representing the 

charging and discharging modes of the BESS at interval t;PBESS,ch
t and 

PBESS,dis
t are the maximum affordable charging and discharging powers of 

the BESS, respectively. Eq. (12) indicates that the BESS charging and 
discharging operations are mutually exclusive. 

As shown in Eq. (13), εBESS
t is the state of energy (SOE) of the BESS 

during a given interval twhich relies on εBESS
t− 1 during the previous inter

val, the amount of energy charged into the BESS, and the energy dis
charged back into the IEH, and the grid at interval t. BESS is limited by 
its depth of discharge (DOD) and maximum capacity, as shown in Eq. 
(14) [33,52,53]: 

εBESS
t = εBESS

t− 1 +

(

ηBESS⋅PBESS,ch
t −

PBESS,dch
t

ηBESS

)

⋅Δτ
/

PBESS; ∀t = 1, 2,…,T

(13)  
(
1 − DODBESS)⋅εBESS ≤ εBESS

t ≤ εBESS; ∀t = 1, 2,…,T (14)  

εBESS
1 = εBESS

T = εBESS (15)  

where ηBESSis the charge/discharge efficiency of the BESS; DODBESSis the 
BESS depth of discharge; εBESSis the maximum capacity. As per Eq. (15), 
this study assumes the energy contained within the BESS is configured to 
its utmost capacity during the initial εBESS

1 and final intervals of the 
scheduling period εBESS

T [52]. 

2.2.5. HSS modeling 
HSS should store the produced hydrogen safely and provide the 

required hydrogen to meet the hydrogen demand. In Eq. (16), the 
hydrogen outflow rate of HSS equals the hydrogen demand of IEH at 
interval t. Eq. (17) indicates that the SOE of the HSS at interval t equals 
the total remaining energy in the previous interval and the hydrogen gap 
between production and consumption. The hydrogen stored in the HSS 
at interval t, denoted byHHSS

t . Eq. (18) models the SOE of the HSS at 
interval t as a function of hydrogen stored in the HSS at interval t and the 
maximum energy stored in the HSS. The SOE of the HSS at interval t 
should be constrained within its physical lower and upper bounds to 
avoid over-charging and over-discharging, as shown in Eq. (19) [55]. 
The energy contained within the HSS is configured to maximum ca
pacity at the start and the end of the scheduling period, as shown in Eq. 
(20). Therefore, HSS is represented as follows [38,56]: 

mHSS
t = Hdemand

t ; ∀t = 1, 2,…,T (16)  

HHSS
t = HHSS

t− 1 + melz
t − mHSS

t ; ∀t = 1, 2,…,T (17)  

εHSS
t =

HHSS
t

HHSS
; ∀t = 1, 2,…,T (18) 
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ε HSS ≤ εHSS
t ≤ εHSS; ∀t = 1, 2,…,T (19)  

εHSS
1 = εHSS

T = εHSS (20)  

where mHSS
t , Hdemand

t represent the output of HSS and the hydrogen de
mand at time t, respectively; εHSS

t is the SOE of the HSS at interval t; 
HHSSis the maximum energy stored in the HSS; ε HSSand εHSSrepresent the 
minimum and maximum SOE of the HSS, respectively. 

2.2.6. Energy balance 
The proposed IEH framework must satisfy all energy requirements 

within a designated period and maintain the energy balance using the 
following equation: 

PG2I
t + PPV

t + PWT
t + PBESS,dis

t = Pload
t + PI2G

t + Pelz
t + PBESS,ch

t ;

∀t = 1, 2,…, T
(21)  

where Pload
t is the electricity load demand at interval t. 

2.3. Objective function 

In this study, the optimization of the BESS and HSS in the IEH was 
achieved by maximizing the use of underutilized RESs. Multi-objective 
functions aim to achieve optimal results in terms of economy, emis
sions, and energy balance ability. The multi-objective optimization 
problem of the IEH problem can be formulated as follows: 

minf (x) = [f1(x) , f2(x) , f3(x) ] (22)  

where f(x)is the vector of the three objective functions, and xis the 
vector of the decision variables defined below: 

x =

⎧
⎨

⎩

PG2I
t ,PI2G

t ,PBESS,dis
t ,PBESS,ch

t , uG2I
t

uI2G
t , uBESS,dis

t , uBESS,ch
t ,melz

t ,mHSS
t

⎫
⎬

⎭

∀t = 1, 2,…,T

; (23) 

The IEH problem involves three objective functions that aim to 
minimize operational costs, carbon emissions, and the energy export 
index. This process is described as follows: 

2.3.1. Minimize operation cost 
The first objective of the IEH is to minimize the operation cost shown 

in Eq. (24). The cost of using an IEH includes the operational costs of the 
equipment (Eq. (25)), the grid taxes (Eq. (26)), and the energy cost (Eqs. 
(27)–(29)). The cost of purchasing fuel is the cost of purchasing the 
biomass for hydrogen electrolysis (Eq. (27)). The cost of buying energy is 
the cost of purchasing energy from the utility grid to meet the load 
demand (Eq. (28)), and the sale of energy includes revenue from the 
hydrogen produced by the electrolyzer and electricity provided by the 
RES to the public grid (Eq. (29)). The revenue from selling hydrogen 
depends on the volume of hydrogen, whereas the price of hydrogen is 
assumed to be constant. However, power sales are contingent on the 
hourly electricity price and the excess production of renewable energy 
sources. The grid tax is based on the consumption and equilibrium tar
iffs, including transmissions without transformers, systems, consump
tion, or carbon taxes (Eq. (30)) [23]. The RES tax is based on production 
and equilibrium tariffs, including induction, balance, and commission 
balance tax ((Eq. (31)) [23]. 

min f1 =
∑T

t=1
Costeq

t +Costtax
t +Costfuel

t +Costbuy
t − Costsell

t (24)  

Costeq
t = λPV ⋅PPV

t + λWT ⋅PWT
t + λBESS⋅PBESS

t + λelz⋅Pelz
t + λHSS⋅mHSS

t (25)  

Costtax
t = taxRES( PPV

t +PWT
t

)
+ taxGrid⋅PG2I

t (26)  

Costfuel
t = Costbiomass

t = λbiomass
t ⋅melz

t (27)  

Costbuy
t = λe

t ⋅P
G2I
t (28)  

Costsell
t = λe

t ⋅P
I2G
t + λH2

t ⋅mH2,sell
t (29)  

taxGrid
t = taxtwt + taxst + taxct + taxcbt + taxCO2 ⋅CO2grid (30)  

taxRES
t = taxit + taxbt + taxcbt (31)  

where λPV , λWT, λBESS, λelzare the equipment operating cost of PV, WT, 
BESS, and electrolyzer, respectively; λe

t is the electricity cost at interval t; 
λH2 , λbiomassrepresent hydrogen selling price and biomass fuel cost, 
respectively; taxtwt , taxst , taxct , taxcbt, taxCO2 are the tax of transmission 
without transformer, system, consumption, commission balance and 
carbon, respectively; taxit , taxbtrepresent the tax of induction and bal
ance; CO2grid is the carbon emission of the grid. 

2.3.2. Minimize carbon emission 
The objective function in Eq. (32) aims to minimize the carbon 

emissions of IEH [23]. An IEH purchases power from the grid to meet the 
load demand and charging, which leads to harmful emissions. 

minf2 =
∑T

t=1
σCO2 ⋅PG2I

t (32)  

where σCO2 represent the CO2emission coefficient. 

2.3.3. Minimize EEI 
The energy export index (EEI) was used to determine the energy 

balance in the grid [57]. This index measures the amount of energy 
exported to the grid. A lower EEI indicates a better balance between 

Fig. 4. Flowchart of the proposed methodology for multi-objective 
IEH framework. 
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energy exports, which reflects the grid’s ability to withstand fluctuations 
and disruptions. Therefore, a lower EEI indicates better grid resilience. 
The objective f3aims to minimize the EEI, which can be computed as 
follows: 

minf3 =

∑T

t=1
PI2G

t

∑T

t=1
Pgen

t

(33)  

where Pgen
t represent the total power generated from RESs at interval t. 

3. Proposed methodology 

This study applies the proposed information gap decision-theory- 
based normalized weighted-sum approach (IGDT-NWS) to the IEH 
optimization problem with multi-objectives. An overview of the pro
posed method for the IEH framework with multiple objectives is pre
sented in Fig. 4. 

3.1. The normalized weighted-sum approach (NWS) 

The NWS method uses different weighting coefficients for each 
objective function in this study. This method is a popular approach for 
solving multi-objective optimization problems. This involves combining 
all functions into one composite objective function. The following 
equations illustrate this: 

Minimize
∑k

i=1
ωi⋅fi(x); ∀i = 1, 2,…, k

s.t x ∈ Ω

ωi ≥ 0

∑k

i=1
ωi = 1

(34) 

Normalizing objectives is essential to obtain pareto optimal solutions 
that reflect the weights the “decision maker assigns.” The normalization 
factor θ is expressed as follows [58]: 

θ =
1

f * − f*
(35) 

This normalization formula depends on the distinctions between the 
optimal values at the Nadir and Utopia points [58]. The “Pareto 
optimal” set represents the range within which the optimal objective 
function differs. The Utopia point f*is achieved through the independent 
minimization of each objective function while subject to the original 
constraints (1)–(21), which present the optimal ideal value for each 
objective. However, the anti-ideal value of the objective function is 
achieved by maximizing each function independently while subject to 
the original constraints (1)–(21), resulting in a Nadir point f *. Hence, the 
normalization factors for the three objective functions can be expressed 
as follows: 

θi =
1

fi
* − fi*

; ∀i = 1, 2, 3 (36) 

Therefore, the formulations of Eq. (34) can be rewritten as an 
aggregated objective function as follows: 

Minimize ω1⋅θ1⋅f1 +ω2⋅θ2⋅f2 +ω3⋅θ3⋅f3 (37)  

where ω1, ω2, and ω3 denote the weights assigned to the three objective 
functions. The objective function can be represented in detail as follows: 

Minimize
[

ω1⋅
f1

f1
* − f1*

+ω2⋅
f2

f2
* − f2*

+ω3⋅
f3

f3
* − f3*

]

(38)  

3.2. IGDT method 

This study uses the IGDT method to model the uncertain RES output, 
energy price, and hydrogen and electricity demand. Generally, the IGDT 
is a non-fuzzy and non-probabilistic method that does not require in
formation regarding the probability distribution of uncertain parame
ters [59]. This method can be used from either a risk-seeking or a risk- 
averse perspective. A hybrid version of the two strategies is proposed 
to consider their advantages for practical and near-realistic system 
modeling, allowing the operator to choose the appropriate strategy for 
operation scheduling goals. In the following subsections, we describe the 
principles and formulation of IGDT. 

3.2.1. Uncertainty modeling 
The theoretical framework of the IGDT encompasses an array of 

uncertainty models. The Fractional error approach, which is one of the 
most commonly used uncertainty models, is mathematically described 
using Eq. (39) [42,60]. This model indicates that the uncertain variable 
deviates less from the forecasted value than the scalar parameterα. The 
uncertainties in the operation system of the input parameters can be 
considered as a set of U. 

U(α, λt) =

{

λt :

⃒
⃒
⃒
⃒
λt − λ̃t

λ̃t

⃒
⃒
⃒
⃒ ≤ α

}

; ∀t = 1, 2,…, T (39)  

whereλ̃trepresents the uncertain forecast data at interval t, respectively. 
The uncertainty modeling concept in IGDT is represented graphically in 
Fig. 5. The confidence interval increases with an increase in the pre
dicted value. 

In this study, the uncertainties include renewable energy source 
outputPPV , PWT, electricity Ploadand hydrogen demandmdemand, and en
ergy priceλe. Regarding this model, αload, αH, αe, αPV , αWTare the uncer
tainty horizons of Pload, mdemand,λe, PPV , PWT, respectively. The 
uncertainty horizon for each input uncertainty data can be rewritten 
according to Eq. (39) as follows [49]: 
(
1 − αload)P̃

load
t ≤ Pload

t ≤
(
1+αload)P̃

load
t (40)  

(
1 − αH)H̃

demand
t ≤ Hdemand

t ≤
(
1+ αH)H̃

demand
t (41)  

(1 − αe)λ̃
e
t ≤ λe

t ≤ (1+αe)λ̃
e
t (42)  

(
1 − αPV)P̃

PV
t ≤ PPV

t ≤
(
1+ αPV)P̃

PV
t (43)  

(
1 − αWT)P̃

WT
t ≤ PWT

t ≤
(
1+ αWT)P̃

WT
t (44)  

3.2.2. Risk-Averse Strategy (RA) 
From a risk-aversion strategy, the IGDT methodology enhances the 

uncertainty horizon to achieve the objective value that does not exceed 
the critical value. This IGDT strategy is recognized as a robustness 
function and can be delineated by the following formulation [42,2]: 

max α(X, λ) (45) 

Subject to: 

f (X, λ) ≤ fcr; ∀λ ∈ U (46) 

Fig. 5. Concept of uncertainty modeling.  
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g(X, λ) = 0; ∀λ ∈ U (47)  

h(X, λ) ≤ 0; ∀λ ∈ U (48)  

fcr = (1 + β)f ; ∀λ ∈ U (49)  

where f is the optimal value if the uncertain input data match the fore
cast data, fcrrepresents the maximum tolerable objective value, and 
βdenotes the critical deviation factor. The main aim of a risk-averse 
strategy is to establish decision variables that mitigate the risks associ
ated with uncertain input data. In other words, the risk-averse IGDT 
ensures that the minimum requirements are satisfied [42,59]. Addi
tionally, lower critical objective values decrease the robustness horizon. 

The risk-averse strategy applied in this study maximizes the uncer
tainty horizon (or robustness horizon) while ensuring that the IEH 
operation cost does not exceed a critical operation cost. In this decision- 
making mode, the IEH operation cost is not worse than the given target 
operating cost for the worst realization of uncertain input. To ensure 
that it is better than the critical operation cost, 

(
1 + αload)P̃load, 

αH( 1 + αH)H̃demand, (1+ αe)λ̃eare the worst realization of electricity, 
hydrogen demands, and electricity prices, respectively, as shown in Eqs. 
(53)–(55). At the same time, the worst PV and WT power realizations are 
(1 − αPV)P̃PV , 

(
1 − αWT)P̃WT , as shown in Eqs. (56), (57). This strategy 

hedges IEH operators against unfavorable demands, RES output, and 
electricity price deviations. Based on the explanations above, the risk- 
averse strategy of IGDT can be expressed as follows [42,45]: 

max(α) (50)  

α = min
(
αload ,αH ,αe,αPV , αWT) (51) 

Subject to: 

f1 ≤ (1+ β)⋅f (52)  

Pload
t =

(
1+ αload)P̃

load
t (53)  

Hdemand
t =

(
1+αH)H̃

demand
t (54)  

λe
t = (1+ αe)λ̃

e
t (55)  

PPV
t =

(
1 − αPV)P̃

PV
t (56)  

PWT
t =

(
1 − αWT)P̃

WT
t (57)  

3.2.3. Risk-Seeker Strategy (RS) 
In the risk-seeking strategy, the target cost is pre-established, and the 

primary objective is to ascertain an uncertainty horizon (or opportunity 
horizon) that renders the attainment of ftg feasible. The most favorable 
deviations of the uncertain input data will ensure that the objective 
function value does not exceed the target ftg. The risk-seeking strategy is 
modeled as follows [42,45]: 

min α(X, λ) (58) 

Subject to: 

f (X, λ) ≤ ftg; ∀λ ∈ U (59)  

g(X, λ) = 0; ∀λ ∈ U (60)  

h(X, λ) ≤ 0; ∀λ ∈ U (61)  

ftg = (1 − ρ)f ; ∀λ ∈ U (62)  

where ftgrepresents the target objective value and ρ denotes the critical 
deviation factor. In this strategy, the optimistic risk-seeking decision- 

maker hopes to benefit from desirable deviations of uncertain input data 
from forecasted values. Similar to the risk-averse strategy, lower ftg re
sults in lower of opportunity horizon values. 

The risk-seeking strategy applied in this study minimizes the un
certainty horizon (or the opportunity horizon) to achieve a target 
operation cost. 

(
1 − αload)P̃load, 

(
1 − αH)H̃demand, (1 − αe)λ̃emust be the 

best realizations of electricity and hydrogen demands and energy prices 
to achieve a target operating cost, as shown in Eqs. (66)–(68). 
(
1 + αPV)P̃PV , 

(
1 + αWT)P̃WT are the best realizations of PV and WT 

power, respectively, as shown in Eqs. (69)–(70). In this strategy, the IEH 
operator aims to increase profits by taking advantage of favorable 
fluctuations in demand, generation RES, and energy prices. According to 
the given explanations, the risk-seeking strategy of IGDT can be 
expressed as follows [42,45]: 

min(α) (63)  

α = max
(
αload , αH ,αe, αPV ,αWT) (64) 

Subject to: 

f1 ≤ (1 − ρ)⋅f (65)  

Pload
t =

(
1 − αload)P̃

load
t (66)  

Hdemand
t =

(
1 − αH)H̃

demand
t (67)  

λe
t = (1 − αe)λ̃

e
t (68)  

PPV
t =

(
1+ αPV)P̃

PV
t (69)  

PWT
t =

(
1+αWT)P̃

WT
t (70) 

In Fig. 6A, the decision-maker adopts a pessimistic approach by 
increasing the minimum objective to account for a more significant 
portion of the uncertain space. However, in Fig. 6B, the decision maker 
is optimistic about the uncertainties of the system. The objective value 
decreases as the uncertain variables deviate favorably from the forecast 
value. 

3.3. Application of the IGDT-NWS 

An overview of the implementation of the IGDT-NWS algorithm for 
the proposed IEH model is illustrated in Fig. 7. 

Fig. 6. Concepts of (A) risk-averse strategy and (B) risk-seeker strategy.  
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Fig. 7. Flowchart of the proposed IGDT-NWS.  
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The IGDT-NWS model is conducted according to the following steps: 
Step 1: Prepare classified input information as known and predicted 

data.  

- Available information: operation equipment cost, taxes, biomass 
electrolyzers, battery, and hydrogen storage system parameters.  

- Predicted data: PV and WT generation, electricity and hydrogen 
demand, electricity price. 

Step 2: Create the uncertainty model (Eq. (40)–(44)). 
Step 3: Set α = 0. Run the base model to calculate the normalization 

factor θi for each objective (defined in Section 2). 
Step 4: Formulate combining all functions into one composite 

objective F(x) (Eq. (38)). 
Step 5: Optimize the objective F(x). 
Step 6: Set the optimal value of objectives in the base model as the 

expected target value f . 
Step 7: Choose to apply one of the two strategies of the IGDT 

method: Set target deviation factor and establish optimal model under 
RA-Strategy or RS-Strategy.  

- Risk-Averse Strategy:  
• Set the critical deviation factor β.  
• Base model with constraints Eq. (52)–(57).  

- Risk-Seeker Strategy:  
• Set the critical deviation factorρ.  
• Base model with constraints Eq. (65)–(70). 

Step 8: Determine the optimal objective value and operation 
scheduling for IEH. 

4. Simulation results 

This section presents various simulation cases for validating the 
proposed paradigm of the IEH model. The deterministic model considers 
the day-ahead data of the RES output, energy price, and energy demand. 

Fig. 8. Day-ahead hourly electric price and load demand.  

Fig. 9. Day-ahead hourly hydrogen price and demand.  
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The IGDT model considers these factors to be uncertain. The simulations 
were performed for 24 h with a 1-hour time step (0,00− 23,00 h), 
resulting in a daily scheduling process with 24 intervals. The formula
tion of the IEH system was solved using a CPLEX solver in GAMS. 

4.1. Input data 

The proposed model was evaluated using a typical IEH as shown in 
Fig. 1. The history of electricity prices and daily electrical demand was 
based on data from [61], as shown in Fig. 8. 

Fig. 9 shows the daily hydrogen demand profile of GreenLab Skive in 
Denmark, ranging from 0 % to 25 % [23]. In addition, the price of green 
hydrogen, based on a survey of the SG H2 Energy, is 2 ($/kg) [62]. The 
type of battery used in the IEH is a Li-ion battery, and the parameters are 
listed in Table 2, which are taken from [2,45,52]. Similarly, the HSS 
parameters in Table 2 were obtained from [33]. The technical param
eters of the electrolyzer stack are listed in Table 3 [33,63,38]. An IEH 
can provide the requisite electrical energy to cater to the loads through 
renewable energy sources or buy from the power grid. Fig. 10 shows the 
forecast data for the RES output collected from [64]. The expenses for 
electric grid taxes and operational costs, including taxes, are listed in 
Tables 4 and 5 [2,7,23,45]. The cost of purchasing biomass fuel for 
biomass electrolysis to produce hydrogen is 0.3 ($/kgH2) [65]. 

Table 2 
Data of BESS and HSS data.  

BESS HSS 

Parameter Value Parameter Value 

PBESS 220 kWh HHSS 20 (kg) 
PBESS,ch,PBESS,dis 60 kW/60 kW εHSS 0.9 
ηBESS 0.93 ε HSS 0.2 
DODBESS 0.70   
εBESS 0.95    

Table 3 
Technical parameters of the biomass electrolyzer.  

Electrolyzer stack 

Parameter Value 

Ac 0.286 (m2) 
a1/a2 7.2 * 10− 3/− 1.5774 * 10− 5 

Ic/I c 804 A/0 A 
Nc/ηelz 4000/0.6 
Pelz 500 (kW) 
QH2 39.72 (kWh/kg) 
Tc 313 K 
ΔGbio 2.894 × 104 (J/mol)  

Fig. 10. Day-ahead hourly output of RESs.  
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4.2. Optimization of IEH without considering uncertainties 

4.2.1. Single-objective optimization 
In this section, an analysis is conducted to consider individually 

minimizing the operational cost, carbon emissions, and energy export 
index objectives. This approach aims to evaluate the conflicting nature 
of the various objectives. Notably, the results show that achieving one 
objective at a minimum may result in another objective having a high 
value. The values of the objective functions in the three single-objective 
cases are listed in Table 6 and visually presented in Fig. 11. 

Figs. 12, 13, 14, and 15 present the scheduling profile of the IEH for 
each single-objective optimization case, which clearly shows their con
tradictory nature. In the first case, the objective is to minimize the 
operating costs. Most of the time, the operator does not use the BESS to 
avoid incurring additional operating costs. The BESS operates for several 
hours and recharges entirely at the end of the day. This leads to an in
crease in the EEI when the energy generated from the RES is sold to the 
market, potentially causing an imbalance in the IEH power grid. 
Furthermore, during high-demand intervals (5:00–18:00 h), the IEH 
must continuously purchase electricity from the grid, causing the 
emission value to increase. In the second case, BESS and HSS are used to 
reduce carbon emissions by utilizing electricity generated by RES 
instead of grid electricity. The amount of electricity purchased from the 
grid decreased by approximately 4.32 % compared to the first case. In 
the final case, the BESS and HSS are fully utilized to balance the energy 
in the IEH, thereby increasing the ability of the IEH to withstand load 
fluctuations. Consequently, the EEI is significantly reduced by 

approximately 58.75 % compared with the first case. In addition, low 
power exports to the grid have resulted in a significant increase in 
operating costs. From the results of the three cases, it is evident that by 
considering only one objective, the values of the other objectives should 
be considered more comprehensively. Therefore, this study proposes a 
multi-objective IEH model with mutually binding goals. 

The operating conditions of the electrolyzer stack used to produce 
green hydrogen are shown in Fig. 16. It includes the controlled elec
trolysis current and voltage and is measured at 24-hour intervals. Case 1 
can maintain relatively stable electrolysis currents compared to case 2,3 
for H2 production to avoid high fluctuations and reduce the associated 
life degradation cost of the electrolyzer. Additionally, the HSS offers 
high operation flexibility for IEH to deal with redundant/deficit RES 
generation, and BESS can help mitigate electrolysis current fluctuations 
during the H2 production process. In all three cases, abundant power 
from RES provides the required activation energy for breaking strong 
atomic bonds and accelerating H2 production rates during hours 5–18. 
At this interval, the electrolysis voltage is much higher to support the 
oxidative depolymerization of biomass. Fig. 17 shows the H2 production 
rate of the IEH for each case. The electrolysis voltage increases with 
increasing current, whereas the temperature remains constant. The HSS 
provides a large storage capacity for wind turbines and photovoltaic 
energy in the form of hydrogen energy, and actions of the BESS help 
manage the electrolysis current fluctuations. Renewable power from 
wind turbines is primarily used to drive biomass electrolysis during 
periods of low demand. Compared to other methods, the first case, with 
the aim of achieving the operation cost objective, helps to coordinate 
better the storage, conversion, and trading of hydrogen and electricity. 

4.2.2. Multi-objective optimization 
In this study, the proposed multi-objective IEH framework aims to 

simultaneously minimize operation cost, carbon emission, and energy 
export index. The proposed NWS is applied to the multi-objective opti
mization of IEH. A detailed result of the application of the proposal is 
presented in the subsection. Table 7 shows the results of cases using 
different weighting factors for each objective function. 

For f1, the values were the lowest in cases 1 when the weighting 
factors were set to the highest. For f2 and f3, the minimum value is 
achieved when the weighting factor of both objective functions is 
highest, as in cases 4 and 6. The objective value changed significantly 
between the minimum and maximum values when changing the 
weighting factors of f1 and f3 by approximately 53 % and 42.6 %, 
respectively. After analyzing six cases, the results show a strong 
contradiction between the f1 and f3 objectives. Similarly, the results 
imply an inverse relationship between f1 and f2. f2 and f3 tended to in
crease or decrease together simultaneously. Therefore, improving one 
objective might involve trade-offs with the other objectives, especially 
between f1andf3. 

4.2.3. Comparison with other multi-objective method 
In general, the mathematical model of the proposed IEH can be 

solved by the ε-constraint method, which is well-known and has been 
applied to various multi-objective optimization (MOP) problems. The 
ε-constraint method is used to reformulate MOP by maintaining only 
one objective and limiting the other objective to specified values. The 
comprehensive mathematical of the ε-constraint method can be found in 
[52]. In this section, the proposed NWS is compared with the 
ε-constraint to solve the MOP of the IEH under study. The optimal cases 
considered the operating costs as the primary objective function, fol
lowed by carbon emissions and EEI (ω1 = 3/6, ω2 = 2/6, and ω3 = 1/6). 
For ε-constraint, ten grid points are selected for each objective function, 
as with the default number of the grids given in the GAMS Model library 
[66]. The results of MOP methods for the considered cases are presented 
in Table 8. 

The optimal solutions of the proposed NWS dominate those achieved 
by the ε-constraint in two objective functions for the case under study. 

Table 4 
The energy production taxes.  

Tax 

Consumption tariff Transmission without 
transformer 

taxtwt 0.66 ($/MWh) 

System taxst 0.82 ($/MWh) 
Production tariffs Consumption taxct 0.03 ($/MWh) 

Induction taxit 0.04 ($/MWh) 
Balance taxbt 0.06 ($/MWh) 

Equilibrium tariffs Commission balance taxcbt 0.01 ($/MWh) 
Carbon tax  taxCO2 0.003 ($/kg)  

Table 5 
The operation cost of the system.  

Operation cost 

Parameter Value 

λPV 0.001 ($/kWh) 
λWT 0.008 ($/kWh) 
λBESS 0.002 ($/kWh) 
λelz 0.001 ($/kWh) 
λHSS 0.001 ($/kg) 
λH2 2($/kg) 
λbiomass 0.3 ($/kg H2)  

Table 6 
Single-objective values.  

Case f1 f2 f3 

Case 1: Minimize operation cost  2.5613  108.3702  0.0417 
Case 2: Minimize carbon emission  6.7275  103.6842  0.0206 
Case 3: Minimize EEI  8.1788  104.1164  0.0172    

Case 1 Case 2 Case 3 

Total power bought from grid (kW)  1490.0342  1425.6045  1431.547 
Total power sold to grid (kW)  292.723  144.7575  120.6736  
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Carbon emission and EEI are reduced by 0.57 % and 3,17 %, respec
tively, while operation cost increases by 1.46 % compared to the 
ε-constraint. Another highlight is that NWS has a lower computation 
time with better performance. For ε-constraint, ten grid points are 
selected for each objective function, resulting in 10 × 10 = 100 sub
problems to be solved, which requires more computational time. 

4.2.4. Effects of the BESS and HSS on the biomass electrolyzer operation 
The effective transition to eco-friendly energy concepts relies heavily 

on stationary energy storage systems. These systems enable the efficient 
utilization of the varying outputs from renewable energy sources. 
Hydrogen technologies, such as fuel cells and electrolysis systems, are 
also gaining significance. They complement battery storage systems and 
are particularly valuable for long-term sustainable energy storage. This 
subsection evaluates the impact of battery and hydrogen storage systems 
on IEH operation. The scenarios are as follows:  

• S1- RES-connected biomass electrolyzer stack: RES and grid supply 
the energy for the biomass electrolyzer; ESS is not utilized.  

• S2- RES/BESS-connected biomass electrolyzer stack: When the RES 
generation exceeds demand, the excess electricity produced by the 
RES is stored in the BESS.  

• S3- RES/HSS-connected biomass electrolyzer stack: Similar to S2, but 
the excess energy is stored as hydrogen energy in the HSS instead of 
the BESS. 

• S4- RES/BESS/HSS-connected biomass electrolyzer stack: RES pro
vides power to the grid-connected electrolyzer, and the BESS and 
HSS are used concurrently. Thus, a portion of the electricity is sold to 
the market or stored in the BESS. The hydrogen produced is used to 
meet demand, and the remainder is stored in the HSS. 

Table 9 shows the results of objectives in simulation cases to evaluate 
the impact of ESS on IEH performance. Different combinations of BESS 
and HSS are used to analyze their impact on IEH operation. The effect of 
multiple storage systems on IEH operations depends on various pa
rameters, including the IEH model and components, energy carrier 
pricing profiles, demand profiles, charge/discharge/storage efficiencies, 
storage capacity, and so on. In the first scenario, the operating cost of 
IEH without ESS is $9.4421. When only BESS, only HSS, and both BESS 
and HSS are used, the operating costs are reduced by 56.38 %, 67.89 %, 
and 71.78 %, respectively. Meanwhile, the remaining two objective 
functions are also significantly reduced. In the second scenario, the 
carbon emission and EEI are reduced by 69.32 % and 84.38 %, respec
tively. In the scenario with only HSS, the result off2andf3decrease by 
62.48 % and 75.15 %, respectively while, in the case of BESS and HSS, 
f2andf3were reduced by 79 % and 95.56 %, respectively. As a result, by 
integrating the HSS into the ESS, the model significantly reduces IEH 
operation costs by 35.29 %, reduces carbon emission by 33.37 %, and 
improves EEI by 71.6 % compared with only using BESS. 

Table 10 compares the average carbon coefficients of CO2 emissions 
per kilogram of hydrogen produced. The table shows the carbon in
tensity of biomass electrolysis, which is currently the primary method 
used to produce green hydrogen. The results demonstrated that S1 had 
the highest CO2 intensity coefficient. However, with the addition of ESS, 
the coefficient decreased significantly, with the most significant re
ductions observed in S2, S3 and S4. S4 reduced approximately 6.5627 kg 
of CO2 compared with S1 without an ESS. S3 and S4 show promising 
results, with only a 0.5689 kg emission difference between these sce
narios. The technical parameters of the biomass electrolyzer are shown 
in Fig. 18. For S3 and S4, the electrolyzer is not used at intervals of 1 h–3 
h when hydrogen demand is low, and the hydrogen stored in HSS is used 

Fig. 11. Results of each objective function in case of for single-objective optimization.  
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Fig. 12. Scheduling profile for each objective optimization problem.  
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to reduce the operation costs of the electrolyzer. However, from hours 
21 to 23 h, the electrolysis current exhibits continuous and dramatic 
changes when the load demand is low. In such situations, the electro
lyzer increases hydrogen production for storage by utilizing the excess 
RES energy, as depicted in Fig. 19. The simulation results indicate that 
the ESS provides high operational flexibility for IEH to handle redundant 
or deficient RES generation, similar to hydrogen. 

4.3. Optimization of IEH considering uncertainties 

The proposed IGDT-NWS model for the IEH under study has 96 un
certain data points, including electricity and hydrogen demand, RES 
production, and energy prices. To achieve the desired objective func
tions while maintaining the operation cost of IEH within acceptable 
limits, it is crucial to study these uncertainties and assess their impact on 
the operating costs and future planning. The operator’s perspective 
plays a vital role in optimal decision-making. Hence, this study considers 

Fig. 13. Electrical energy transactions between IEH and the grid.  

Fig. 14. SOC of the BESS for each objective.  
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both the risk-averse and risk-seeking decision-making strategies of the 
IGDT approach. The optimal cases considered the operating costs as the 
primary objective function, followed by carbon emissions and EEI (ω1 =

3/6, ω2 = 2/6, and ω3 = 1/6). 

4.3.1. Risk-Averse Strategy 
The risk-averse (RA) strategy is an IGDT model that considers the 

uncertainty of input data. It aims to maximize the uncertainty or con
fidence range to ensure that any deviation from the uncertainty in the 
confidence set does not exceed the critical value of the objective func
tion. For the operating cost objective function, the RA strategy does not 
focus on minimizing operating costs of the IEH but on maximizing the 

sustainability range. This ensures that the worst-case operational costs 
do not exceed a certain threshold, even if this implies increasing the IEH 
operating costs for better durability and protection from potential 
adverse deviations. While balancing load and generation, operators 
must consider the risks of increased demand and reduced generation 
resources in their RA strategy. The IEH scheduling subsection considers 
uncertainties, such as electric and hydrogen demands, RES output, and 
the price of energy transactions with the power grid. The impact of each 
uncertain variable on the values of the objectives, decision variables, 
and scheduling operations from the RA perspective was investigated. 

Fig. 15. SOC of HSS for each objective.  

Fig. 16. Operation technical parameters of the biomass electrolyzer with three cases.  
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A) IEH scheduling considering single uncertainty: The uncertainty of 
electric and hydrogen demands, output of PV and WT, and the 
electricity price are considered separately. In this regard, each 
uncertain variable is evaluated from the risk-averse perspective 
to the IEH operation cost. Table 11 and Fig. 20 indicate the 
robustness horizon for each uncertain data for different critical 
operation cost deviation factors. The simulation results show that 
the deviations in electricity demand, hydrogen demand, and 
output of WT are crucial in the operation of the IEH. For instance, 
the robustness horizon of the electric demand is 0.0785 if the 
critical cost deviation factor β is 0.10. It means the IEH operation 
cost will be at most 10 % higher than the nominal operation cost 
if the electricity demand deviates within a 7.85 % band concen
trated at their forecasted values. According to the results in 
Table 11, for the critical operation cost of $2.9312, the maximum 
robustness horizon considering the uncertainties of electricity 
demand, hydrogen demand, PV and WT output, and the elec
tricity price are 0.0785, 0.0552, 0.2555, 0.0495, and 0.2529, 
respectively. Therefore, operating costs do not exceed the critical 
cost when electricity demand, hydrogen demand, the output of 
PV and WT, and the electricity price fluctuate from forecast 
values within 7.85 %, 5.52 %, 25.55 %, 4.95 %, and 25.29 %, 
respectively. Similarly, the other cases can be considered. 

B) IEH scheduling considering all uncertainties: In this case, the un
certainties of electricity demand, hydrogen demand, the output of 
RES, and the electricity price are simultaneously considered. 
Therefore, IEH scheduling with all uncertainties aims to maximize 
the robustness horizon and not to exceed critical operation costs. 
Considering all uncertainties with αtotal are equal to αload + αe + αPV 

+ αWT + αH, the operation scheduling for deviation factor β = 0.10 is 
done. According to Table 12, the total robustness horizon αtotal is 
equal to 0.2556. The operation cost of the IEH is guaranteed not to be 
higher than $2.9312 if electricity demand, hydrogen demand, the 
output of PV and WT, and the electricity price do not deviate from 
the 5 %, 1.24 %, 10 %, 7.06 %, and 17.2 % with forecasted value, 
respectively. 

Fig. 17. Green hydrogen production of IEH with three cases.  

Table 7 
The optimal solutions of multi-objective under different cases.  

Case Weighting factors value Objective value 

ω1 ω2 ω3 f1 f2 f3 

1 3/6 2/6 1/6  2.6647  106.406  0.0366 
2 3/6 1/6 2/6  2.6773  106.3617  0.0364 
3 2/6 3/6 1/6  2.7836  106.1342  0.0351 
4 1/6 3/6 2/6  5.5452  103.7411  0.0215 
5 2/6 1/6 3/6  3.1409  105.778  0.032 
6 1/6 2/6 3/6  5.6818  103.829  0.021  

Table 8 
Comparison results between the proposed method and ε-constraint method.  

Method Operation 
cost 

Carbon 
emission 

EEI Computational time 
(s) 

ε-constraint  2.6263  107.0167  0.0378  90.62 
Proposed  2.6647  106.406  0.0366  38.26  

Table 9 
The optimal solutions of multi-objective under different scenarios.  

Scenarios f1 f2 f3 

Scenarios 1: Without ESS  9.4421  506.687  0.8251 
Scenarios 2: Only BESS  4.1182  155.428  0.1289 
Scenarios 3: Only HSS  3.032  190.1333  0.205 
Scenarios 4: BESS and HSS  2.6647  106.406  0.0366  

Table 10 
Ratio of CO2 per hydrogen produced.  

Scenarios kgCO2

kgH2  

S1: Without ESS  8.3063 
S2: Only BESS  2.548 
S3: Only HSS  3.1169 
S4: BESS and HSS  1.7436  
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4.3.2. Risk-Seeker Strategy 
This section presents the computational cases of the risk-seeking (RS) 

model. Decisions on scheduling activities in the IEH are made from the 
perspective of an optimistic decision-maker. The resulting values of the 
objective functions, such as the amount of electricity traded with the grid 
and the amount of hydrogen produced, are determined based on the 
outlook of an optimistic decision-maker seeking the risk and opportunity 
scope of the factors. In this model, the objective is not to minimize oper
ating costs but rather to identify the minimum required deviation of the 
input data into various uncertainties to achieve the target operating costs.  

A) IEH scheduling considering single uncertainty: The uncertainty of 
electric and hydrogen demands, PV and wind power generation, 
and the price of electricity purchased from the power grid are 
considered separately. In this regard, each uncertain variable is 
evaluated from an optimistic risk-seeker operator. Table 13 in
dicates the opportunity horizon for each uncertain data for 
different target operation cost deviation factors ρ. According to 
the Table 13, for the target operation cost of $2.3982 or deviation 
factor ρ = 0.1, the minimum opportunity horizon considering the 
uncertainties of electricity demand, hydrogen demand, PV and 

Fig. 18. Technical variables of electrolyzer cells.  

Fig. 19. The hydrogen produce rate of each scenario.  
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WT output, and the electricity price are 0.4834, 0.1483, 0.2555, 
0.1512, and 0.3291, respectively. Considering a target cost de
viation factor of 0.10 means that the decision-maker obtains 
decision variables and opportunity horizons to achieve an oper
ation cost 10 % lower than the nominal cost. The results show 
that operating costs can satisfy the target cost when electricity 
demand, hydrogen demand, the output of PV and WT, and the 
electricity price fluctuate from forecast values within 48.34 %, 
14.83 %, 25.55 %, 15.12 %, and 32.91 %, respectively.  

B) IEH scheduling considering all uncertainties: Table 14 indicates the 
total opportunity horizon for ρ = 0.10 of target operation cost. 
According to Table 14, the total opportunity horizon αtotal is equal 
to 0.2569. The operation cost of the IEH is guaranteed not to be 
higher than $2.3982 if the output of WT matches the predicted 
value. Meanwhile, electricity load, hydrogen demand, the output 
of PV, and the electricity price are within the range of 4.83 %, 
5.86 %, 10 %, and 5 % of forecasted values, respectively. 

4.4. Comparison of decision variables for without-uncertainties, risk- 
averse, risk-seeking decision-making, robust optimization 

In this section, considering energy price uncertainty from the 
transaction with the power grid, a comparison of optimal objectives and 

the impact of uncertainty on IEH operation for without-uncertainty, RA, 
RS, and robust optimization is presented. The robust optimization (RO) 
method provides valuable results in scenarios characterized by high 
uncertainty and lacking input data regarding random factors. RO en
sures the issue has been resolved against the uncertainty parameters in 
one scenario called “the worst-case scenario” and indicates the decision- 
conservation level for the decision-maker. A comprehensive mathe
matical of RO has been described in [6,39]. The results are presented in 
Tables 15–16 and Fig. 21. 

Table 11 
Compared effect of deviation factors βon objective values and decision variables.  

β Critical operation 
cost ($) 

αload αe αPV αWT αH  

0.01  2.6913  0.0466  0.0208  0.1479  0.0291  0.032  
0.03  2.7446  0.0537  0.0624  0.1718  0.0338  0.0371  
0.05  2.7979  0.0608  0.1042  0.1957  0.0383  0.0423  
0.10  2.9312  0.0785  0.2529  0.2555  0.0495  0.0552  
0.15  3.0644  0.0962  0.2564  0.315  0.0606  0.0681  
0.20  3.1976  0.1136  0.3532  0.3737  0.0717  0.081  
0.25  3.3309  0.1310  0.4328  0.4325  0.0827  0.0937  
0.30  3.4641  0.1479  0.4535  0.4914  0.0936  0.1065  
0.40  3.7306  0.1793  0.585  0.609  0.1153  0.1319  
0.50  3.9971  0.2107  0.7373  0.7265  0.1355  0.1573  

Fig. 20. Acceptable deviation from different input data guarantees critical operation cost.  

Table 12 
Total robustness horizon for 0.10 deviation factor of critical operation cost.  

β αtotal αload αe αPV αWT αH 

0.10 0.2556 0.05 0.1720 0.1 0.0706 0.0124  

Table 13 
Compared effect of deviation factors ρon objective values and decision variables.  

ρ Target operation 
cost ($) 

αload αe αPV αWT αH  

0.01  2.6381 0.3307 0.1565  0.1479  0.1246  0.1255  
0.03  2.5848 0.3646 0.1941  0.1718  0.1305  0.1305  
0.05  2.5315 0.3986 0.2327  0.1957  0.1364  0.1356  
0.10  2.3982 0.4834 0.3291  0.2555  0.1512  0.1483  
0.15  2.265 NA 0.4255  0.315  0.1659  0.1610  
0.20  2.1318 NA 0.522  0.3737  0.1806  0.1737  
0.25  1.9985 NA 0.6184  0.4325  0.1954  0.1864  
0.30  1.8653 NA 0.7149  0.4914  0.2164  0.1992  
0.40  1.5988 NA NA  0.609  0.261  0.2252  
0.50  1.3324 NA NA  0.7265  0.3057  0.2512  

Table 14 
Total opportunity horizon for 0.10 deviation factor of target operation cost.  

ρ αtotal αload αe αPV αWT αH 

0.10 0.2569 0.0483 0.05 0.1 0 0.0586  
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Fig. 21 and Table 16 compare the decision variables in the trans
action energy for the without-uncertainties, risk-averse, risk-seeking, 
and robust optimization (RO). The results show that the RO strategy 
always considers buying from the grid in the worst-case scenario, where 
the RES output is insufficient to meet the load demand. Therefore, the 
amount of electricity purchased from the grid with the RO method is the 
highest. Meanwhile, the RS method, with an optimistic view of the 
decision-maker, does not buy electricity from the grid most of the time 
and has superior export to the grid in the case of not considering un
certainty, RA, and RO, especially during periods of low load demand 
compared to the RES output (1–4 h) and (19–23 h). Across most hours, 
hourly energy buying by the RA strategy and RO tends to have higher 
costs for buying electricity, whereas the RS strategy reduces 22.69 % and 
28.4 %, respectively. This result is because the RS considers the possi
bility of changing the uncertainty output of the RESs in a favorable di
rection within the allowed confidence range to ensure a total supply of 
load needs without buying electricity from the grid. The IEH operator 
increases the electricity exported to the power grid and reduces the 
electricity purchased from the grid. In contrast, in RA decision-making, 
the IEH purchases restrictions on electricity from the power grid to 
decrease the impact of the price uncertainty of electricity purchased 
from the power grid. As shown in Table 15, the cost of the RA increases 
by 9.1 %, whereas the RS reduces the cost by 10 % compared to the case 
where uncertainty is not considered. For RO, the operator has a much 
more pessimistic view of uncertain factors, making the operating costs 
very high compared to other cases. 

5. Conclusions 

This paper proposes a comprehensive IEH model that fully utilizes 
solar PV and wind turbine power generation to produce green hydrogen 
using a biomass electrolyzer with BESS and HSS. The proposed IEH was 
developed as a multi-objective problem with three objective functions: 
operational cost, carbon emissions, and EEI objectives. The NWS was 
proposed to solve the multi-objective problems in various simulation 
cases. Scheduling of the IEH for producing green hydrogen was per
formed assuming no uncertainty, RA, RS, and RO. This study investi
gated the impacts of the risk and deviation factors of critical and target 
costs on IEH operational costs. The IGDT method is a risk-aware method 
that handles uncertainties in electric and hydrogen demands, RES 
output, and energy prices. In addition, this study compared the results of 
the optimal IEH operation with and without uncertainties. 

In this study, we also examined the impact of ESS on IEH operations. 
Multiple variables, such as the IEH model, energy pricing, demand 
profiles, efficiencies, and storage capacities, influence the impact of ESS. 
The results showed that energy storage systems significantly affected the 
operation of IEHs, leading to substantial cost reductions and improve
ments in other objective functions. The BESS and HSS provide signifi
cant cost reductions and other operational improvements, indicating 
their economic viability. Using only the BESS, only HSS, and both BESS 
and HSS can reduce the operation costs by 56.38 %, 67.89 %, and 71.78 
%, respectively. The combination of BESS and HSS offers the most 
environmentally friendly solution, reducing carbon emissions by up to 
79 % and the energy export index EEI by 95.56 %. This study suggests 
that IEHs with multiple types of ESS are more flexible and efficient in 
operations and can adapt to various energy prices and demand profiles. 
The results show that by integrating the HSS into the ESS, the model 
significantly reduces IEH operation costs by 35.29 %, reduces carbon 
emission by 33.37 %, and improves EEI by 71.6 % compared with only 
using BESS. In future work, it would be interesting to investigate how 
these benefits scale with the IEH’s size and examine the trade-offs be
tween initial investment in the ESS and long-term operational cost 
savings. 

Table 15 
Compared objective values for each case.  

Case f1 f2 f3 

Case 1: Without uncertainties  2.6647  106.406  0.0366 
Case 2: Risk-Averse Strategy (β = 0.1)  2.9311  117.0466  0 
Case 3: Risk-Seeker Strategy (ρ = 0.1)  2.3982  90.4856  0.0421 
Case 4: Robust optimization (RO)  6.9922  117.0466  0.0292  

Table 16 
Compare objective values for each case.  

Hour Without uncertainties Risk-Averse Strategy (β = 0.1) Risk-Seeker Strategy (ρ = 0.1) Robust optimization 

G2I (kW) I2G (kW) G2I (kW) I2G (kW) G2I (kW) I2G (kW) G2I (kW) I2G (kW) 

0  50.9  0  191.65  0  43.1867  0  53.742  0 
1  0  23.0866  0  0  0  14.4178  0  30.2549 
2  0  13.7092  0  0  0  17.2244  60.9827  0 
3  0  13.7718  48.7699  0  0  22.6059  0  26.8412 
4  0  0  85.2129  0  0  5.3326  3.6717  0 
5  15.9314  0  0  0  9.8264  0  20.8994  0 
6  68.4048  0  0  0  55.3918  0  86.2184  0 
7  112.0250  0  0  0  102.9233  0  118.5875  0 
8  159.4698  0  0  0  134.1188  0  154.0078  0 
9  148.7393  0  149.8685  0  137.0301  0  156.0579  0 
10  130.4704  0  0  0  107.3920  0  125.3023  0 
11  103.9112  0  170.3684  0  89.8189  0  106.193  0 
12  102.7340  0  103.5471  0  89.0184  0  95.0405  0 
13  130.3456  0  233.579  0  117.8822  0  125.4174  0 
14  114.4089  0  191.813  0  90.6582  0  122.6509  0 
15  117.7388  0  0  0  106.1053  0  126.7262  0 
16  80.2854  0  169.1665  0  54.8891  0  89.3365  0 
17  110.0314  0  80.2559  0  100.4942  0  100.8379  0 
18  17.6318  0  125.2503  0  5.3954  0  26.13709  0 
19  0  31.0354  0  0  0  36.6226  0  40.3744 
20  0  44.0184  0  0  0  46.9267  0  51.8337 
21  0  46.4708  24.9983  0  0  49.5684  0  23.3228 
22  0  58.8239  0  0  0  62.2322  0  32.668 
23  0  25.9514  34.8510  0  0  40.8156  37.522  0 
Total  1463.0281  256.8676  1609.3309  0  1244.1309  295.7463  1737.7524  0  
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When comparing decision variables in scenarios without un
certainties as well as in risk-averse (RA), risk-seeking (RS), and robust 
decision-making, it was found that the IEH operator purchases less 
electricity from the power grid when making risk-seeking decisions to 
hedge against the risk of electricity price and demand deviations. On the 
other hand, in the RA strategy and RO, the IEH buys more electricity 
from the power grid than without uncertainty, and ignoring the price 
uncertainty of electricity purchased from the power grid to decrease its 
operation cost and meet demand can increase significantly. The two 
strategies of the IGDT approach result in a planning schedule that is 
more uncertainty-aware and more effective in terms of economics. The 
planning obtained for IEH with RA strategy is robust against the 
maximum prediction error of electricity demand, hydrogen demand, the 
output of PV and WT, and the electricity price of 5 %, 1.24 %, 10 %, 7.06 
%, and 17.2 %, respectively. With the RS strategy, our proposed method 
can optimistically reduce operation cost by 10 % with the output of WT 
matches the predicted value. Meanwhile, electricity load, hydrogen 
demand, the output of PV, and the electricity price are within the range 
of 4.83 %, 5.86 %, 10 %, and 5 % of forecasted values, respectively. The 
normalized weighted-sum approaches to solve multi-objective problems 
resulted in compromised and efficient solutions in which the objectives 
were close to the ideal values. The IEH operators can consider multiple 
weighting factor options to satisfy different operating requirements. 

It should be noted that each subsystem has some impact on the 
functioning of the IEH, and its impact can be increased or decreased 

depending on the underlying structure of the IEH. Although the con
clusions drawn in this study are based on the schematic of the proposed 
IEH shown in Fig. 2, integration of other subsystems, such as thermal 
storage systems, can significantly impact the overall performance of the 
IEH. Therefore, any changes to the structure of the proposed IEH model 
(such as adding another type of energy storage) would be followed by 
thoroughly detailed analysis for the new architecture, which is one of 
our future works. Furthermore, developing methods that integrate ma
chine learning algorithms into predictive modeling and decision-making 
in the IEH could be beneficial. Deploying advanced machine learning 
and data analytics techniques can provide more accurate predictions of 
energy production, consumption, and storage behavior, thus enhancing 
IEH operation efficiency. 
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