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Abstract—The accurate forecasting of short-term load plays a
significant role in power systems operation and planning. This
paper suggests a short-term load forecasting model combining
Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM). The developed CNN-LSTM aims to capture
both spatial and temporal dependencies within the load data,
leveraging the strengths of both architectures. Simulations are
performed using real-world power system load data. Comparative
analyses are carried out against standalone CNN and LSTM
models. The CNN-LSTM has significantly better forecasting
accuracy than other models, showcasing its effectiveness in short-
term load forecasting.

Index Terms—Short-term load forecasting, CNN-LSTM, Long
Short-Term Memory, Convolutional Neural Networks

I. INTRODUCTION

Short-Term Load Forecasting is essential for operations and
planning in power systems, offering numerous benefits to
power utilities and grid operators. The accurate prediction of
load demand is crucial for maintaining the stability, reliability,
and efficiency of the power system. Grid operators rely on
load forecasting to effectively balance the electricity supply
and demand, avoiding imbalances that can lead to disruptions
or blackouts. By anticipating load variations in the near future,
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operators can make informed decisions regarding the optimal
allocation and dispatch of power generation resources, trans-
mission capacities, and distribution networks. This enables
efficient resource planning, minimizes operational costs, and
improves overall system efficiency. Therefore, it is very impor-
tant to develop efficient short-term load forecasting models.

Traditional methods of forecasting load are exponential
smoothing [1], regression analysis [2], and autoregressive
integrated moving normal (ARIMA) [3]. During recent years,
machine learning methods have been suggested, such as fuzzy
logic [4], support vector machine (SVR) [5], and artificial
neural network (ANN) [6]–[8]. In [9], a multi-step recursive
method using an echo state network (ESN) was employed
for forecasting short-term loads. Long short-term memory
(LSTM) was suggested in [10] and [11] to forecast the short-
term aggregated load. To forecast day-ahead load profiles, a
shallow ANN and deep neural network (DNN) were combined
in [12]. Based on weather forecast variables and historical load
data, the authors in [13] applied a wavelet neural network
(WNN) forecasting system. In [14], short-term load forecasts
were presented using a multi-stage ANN model based on
forecasted temperatures.

This paper suggests a short-term electricity load forecast-
ing model using Convolutional Neural Network-Long Short-
Term Memory (CNN-LSTM). By leveraging CNN and LSTM
strengths, the CNN-LSTM efficiently predicts electrical loads.979-8-3503-8106-1/23/$31.00 ©2023 IEEE
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The CNN-LSTM model is applied to make one-step and multi-
step forecasting. This study considers real-world power system
load data of Ho Chi Minh City. New input features are also
generated based on rolling time-index series, including hour,
weekday/weekend, and month indexes. The results from the
suggested model are also compared with those from CNN and
LSTM models, which indicate its superior performance.

II. CNN-LSTM MODEL

A. CNN

CNN is a feed-forward neural network inspired by bio-
logical visual cognition. CNN has the capability to enhance
the features of limited data and thoroughly explore the latent
information of time series data. Hence, CNN is used to
capture the local features of time series data. Its structure
contains convolutional, pooling, and fully connected layers.
The quantity of convolution kernels can determine the level
of feature extraction abstraction. The number of convolution
kernels can define the level of abstraction of feature extraction.
Additionally, the convolution kernel size can be modified to
match the fixed length of the input sequence data. The pooling
layer is utilized to discard less significant features. Common
pooling techniques include average pooling and maximum
pooling. These pooling operations frequently make use of the
ReLU activation function. The primary function of the fully
connected layer is to connect the neurons from the pooling
layer into one-dimensional vectors. The one-dimensional con-
volutional layer is utilized to discover potential features in the
fixed-length input sequence. Following the convolutional and
pooling layers, the corresponding feature vectors are produced
as output. The convolution operation can be defined in the
following equation:

yi = σ

k∑
j=1

(wj · xi−j+k + b) (1)

where xi−j+k represents the input series, wj represents the
weight matrix of the convolution kernel, σ represents the
activation function, k represents the number of convolution
kernels, b represents the deviation value, and yi represents the
output value of the convolutional layer.

B. LSTM

LSTM is an RNN architecture designed to capture long-
term dependencies within sequential data, overcoming the
drawbacks of conventional RNNs. LSTM can address the chal-
lenge of the vanishing gradient problem, which occurs when
gradients exponentially diminish during backward propagation
through time in conventional RNNs. This problem hinders the
ability of RNNs to capture long-range dependencies effec-
tively. The LSTM architecture is depicted in Fig. 1. At the
core of the LSTM architecture are memory cells, which can
store information over long periods of time. These memory
cells have a unique structure that allows them to selectively
learn and forget information based on the context of the input
sequence. This selective memory management is facilitated by

Fig. 1. The architecture of LSTM [15].

three main components: the input gate, the forget gate, and the
output gate. The mathematical operation of the LSTM can be
given in the following equations:

ft = σg(Wfxt + Ufht−1 + bf ) (2)

it = σg(Wixt + Uiht−1 + bi) (3)

ot = σg(Woxt + Uoht−1 + bo) (4)

c̃t = σc(Wcxt + Ucht−1 + bc) (5)

ct = ft � ct−1 + it � c̃t (6)

ht = ot � tanh(Ct) (7)

where it, ft, and ot denote the input gate, forget gate, and
output gate, respectively; W and U represent weight matrices;
b represent biased values of different gates; xt denotes the
input vector at the current time-step; ht−1 and ht denote
the hidden state at the previous time-step and current hidden
state, respectively; ct−1, ct, and c̃t denote the cell state at the
previous time-step, current cell state, and candidate cell state,
respectively; � denotes an element-wise operator; σg and σc
represent the non-linear activation functions.

C. CNN-LSTM

CNN-LSTM is proposed specifically for time series fore-
casting tasks, where the input data has a spatial structure
or grid-like format. The key idea behind CNN-LSTM is
to replace the matrix-vector multiplication operations in the
LSTM memory cell and gating mechanisms with convolutional
operations. This enables the CNN-LSTM to process input
sequences of arbitrary length while preserving the spatial
structure of the data.

Fig. 2. A typical CNN-LSTM model.
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Fig. 3. Data on electricity load demand in Ho Chi Minh City.

Fig. 2 depicts CNN-LSTM architecture. The CNN model
captures the local pattern of the data. As input to the LSTM
layer, a single one-dimensional vector is created by flattening
the samples. The LSTM model is specifically created for
learning the long-term dependencies in the data. The final
forecasting is generated by passing through dense layers. By
incorporating convolutional operations into the LSTM archi-
tecture, time series data are effectively captured in terms of
both short-term and long-term dependencies while leveraging
spatial structure in the CNN-LSTM model.

III. CNN-LSTM-BASED FORECASTING MODEL

A. Data collection

Time series data on load consumption is collected from
historical data, and then null values are examined to confirm
reliability and accuracy.

B. Feature extraction

New features, which include the month indexes {M =
1, 2, ..., 12}, weekday indexes {W = 0, 1, 2}, and hour in-
dexes {H = 0, 1, ..., 23}, are created.

C. Normalization

The features can be normalized using the min-max tech-
nique as follows:

xnorm =
x− xmin

xmax − xmin
(8)

D. Time Series Construction

A length T is determined for the input sequence. Following
the normalization of input features, the sequences can be struc-
tured in the following manner: the hourly load consumption
of previous T time-steps; the month indexes of previous T
time-steps; the weekday indexes of previous T time-steps; the
hour indexes of previous T time-steps. After normalization,
the input features are converted to shape: [samples, time-steps,
features].

TABLE I
RESULTS OF SINGLE-STEP FORECASTING UNDER VARIOUS LENGTHS OF

INPUT SEQUENCES

Time-step RMSE (MW) MAE (MW) MAPE (%)
2 46.1851 30.8555 1.5434
4 44.6730 30.2609 1.5247
8 43.6801 29.4679 1.4820

12 42.8693 28.3057 1.4264
16 42.7247 28.3743 1.4157
20 42.3591 28.4095 1.4270
24 42.4666 28.0615 1.4125
48 42.4933 27.7398 1.4048
72 43.8714 30.2230 1.5045
120 43.0970 28.3001 1.4321
144 42.5879 28.8703 1.4513
168 43.1719 29.2877 1.4597

TABLE II
RESULTS OF SINGLE-STEP FORECASTING FOR DIFFERENT MONTHS

Time-step RMSE (MW) MAE (MW) MAPE (%)
September 42.1169 29.9549 1.5853

October 51.2590 28.1783 1.4374
November 35.1319 25.2258 1.2258
December 39.5973 27.5938 1.3712

E. Forecasting Model

The CNN-LSTM model uses a single one-dimensional con-
volutional layer with a convolutional kernel size of 2. LSTM
contains a single layer with 100 neurons. A flatten layer is
attached to output one-dimensional vectors. Two Dense layers
incorporate the output into one-dimensional data. The initial
Dense layer consists of 50 neurons, while the other layer is
the output layer. In CNN-LSTM, the mean square error (MSE)
loss function is minimized using the Adam optimizer.

• Single-step forecasts create one output value Yt = {dt+1}
for the following time step.

• Multi-step forecasts create the output sequence Yt =
{dt+1, dt+2, ..., dt+N} for the following N time steps.

IV. SIMULATION RESULTS

A. Simulation Setup

Fig. 3 presents the electricity load demand, which is taken
from historical data for 2011-2012 in Ho Chi Minh City.
With an hourly sampling interval, the dataset contains 17544
samples. The training data is from January 2011 to April 2012,
while the validation data is from May 2012 to August 2012.
Data from September - December 2012 are employed to test
the performance of the developed forecasting model.

B. Performance Indicators

This study uses the following performance metrics to eval-
uate forecasting results:

RMSE =

√√√√ 1

K

K∑
k=1

(yk − ŷk)2 (9)
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Fig. 4. Results of single-step forecasting for different months.

Fig. 5. Results of single-step forecasting for different typical days.

TABLE III
RESULTS OF MULTI-STEP FORECASTING FORECASTING UNDER VARIOUS

LENGTHS OF INPUT SEQUENCES

Time-step RMSE (MW) MAE (MW) MAPE (%)
24 86.6166 61.5528 3.1143
48 92.6941 67.6267 3.3957
72 93.9456 66.3116 3.3136
120 94.2306 65.9103 3.3780
144 90.4473 63.1566 3.2580
168 96.6155 69.4435 3.4947

TABLE IV
RESULTS OF MULTI-STEP FORECASTING FOR DIFFERENT MONTHS

Time-step RMSE (MW) MAE (MW) MAPE (%)
September 100.8959 74.2654 4.0733

October 74.0861 53.4525 2.7356
November 79.4760 58.7400 2.7548
December 89.8640 60.0917 2.9146

MAE =
1

K

K∑
k=1

|yk − ŷk| (10)

MAPE =
1

K

K∑
k=1

∣∣∣∣yk − ŷkyk

∣∣∣∣ (11)

where K denotes the size of the data samples, ŷk denotes the
predicted value, and yk denotes the actual value.

C. Single-step forecast

The CNN-LSTM undergoes testing with different lengths
of input sequences to determine an appropriate input sequence
length for a single-step-ahead forecast. As shown in Table I,
the CNN-LSTM model obtains the best results with the lowest
values of MAE, MAPE, and RMSE metrics by selecting
48-step sequences. This indicates that a look-back window
spanning 48 time steps can provide the model with the most
relevant historical information for accurate forecasting.

Table II displays the accuracy of forecasts from September
2012 to December 2012. Notably, the best forecasting results
are obtained in November 2012. This implies that the model
works remarkably well in capturing and predicting patterns
for that particular month. Figs. 4 and 5 illustrate the one-step
forecast results for the final four months of 2012 as well as
the typical days of these months. From these figures, predicted
values can be observed alongside the actual values for each
month and each typical day. This analysis provides valuable
insights into the predictive performance of the model during
this specific period. It can be seen that forecasted load values
closely align with the actual data, showcasing the efficacy of
the forecasting model to forecast one-step loads accurately.

D. Multi-step forecast

In this section, the CNN-LSTM is employed to forecast the
24-step ahead. Table III presents performance comparisons of
the CNN-LSTM model for multi-step forecasting considering
different input sequence lengths. The analysis of different
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Fig. 6. Results of multi-step forecasting for different months.

Fig. 7. Results of multi-step forecasting for different typical days.

TABLE V
COMPARISON OF FORECASTING PERFORMANCE FOR DIFFERENT MODELS

Methods Single-step forecast Multi-step forecast
RMSE MAE MAPE RMSE MAE MAPE
(MW) (MW) (%) (MW) (MW) (%)

CNN-LSTM 42.49 27.73 1.40 86.61 61.55 3.11
CNN 46.24 32.49 1.62 90.12 64.73 3.32

LSTM 43.54 28.61 1.45 93.33 64.16 3.23

input sequence lengths highlights the importance of selecting
an appropriate look-back window size, as it directly impacts
the efficacy of the proposed model. From Table III, the highest
accuracy in multi-step forecasting is achieved by utilizing 24-
step input sequences to forecast 24-step horizons.

The precision of multi-step forecasts is assessed over dif-
ferent months, and the results are tabulated in Table IV. The
observed smallest forecasting error in October suggests that
the model is successful in capturing the specific dynamics
and trends present during that time of the year. Figs. 6 and 7
illustrate the results of the multi-step forecast for the final four
months of 2012 as well as the typical days of these months.
As shown in Figs. 6 and 7, the forecasted load values exhibit
a considerable degree of consistency with the actual data.
Hence, the CNN-LSTM proves its effectiveness in multi-step
forecasting as well.

E. Performance comparison

Table V compares the forecast results obtained from CNN-
LSTM, CNN, and LSTM models. It can be observed that
the CNN-LSTM model yields the smallest values for MAE,
MAPE, and RMSE among the three models. The CNN-LSTM
model combines the advantages of both architectures, wherein
relevant features are extracted from time series data using
convolutional layers of CNNs and then passed to LSTM layers
for sequence modeling and forecasting. By capturing both
local and long-term dependencies in the data, this architecture
improves forecasting performance. The fact that the CNN-
LSTM model obtains the best forecast errors indicates that
it outperforms both other models in this dataset.

V. CONCLUSION

This paper suggested an efficient forecasting model for
short-term load forecasting using specialized CNN and LSTM
structures. The CNN initially captures the distinctive infor-
mation from the load sequence, which is then passed as
one-dimensional vectors to the LSTM. The forecasting per-
formance of the CNN-LSTM was validated using the load
demand dataset from the power system in Ho Chi Minh City
(Vietnam). The forecasting results indicate that the CNN-
LSTM model has successfully captured the underlying patterns
and dynamics of the dataset of hourly load demand. Moreover,
comparisons show that the developed model obtained the best
MAE, MAPE, and RMSE results compared to other models.
Therefore, the proposed CNN-LSTM model is a potential
method for accurate short-term electricity load forecasting.
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