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Abstract—The widespread implementation of renewable en-
ergy sources is posing new and distinct challenges for power
systems. Consequently, power system state estimation has become
increasingly essential for monitoring, operating, and safeguarding
modern power systems. Conventionally, physics-based models
such as weighted least square or weighted least absolute value
were utilized, which classically analyze a single snapshot of
the systems and fail to capture the temporal connections of
system states. Thus, this study exploits the potential of machine
learning approaches to forecast the state values of power systems.
The performance and stability of innovative machine learning
methodologies are validated using the IEEE systems. The results
of the simulations are encouraging, which shows the effectiveness
and feasibility of the proposed machine learning methods for
power system state estimation.

Keywords—Power system state estimation, machine learning,
deep learning, Random Forest, XGBoost

I. INTRODUCTION

The power grids are rapidly changing due to the integra-
tion of extensive renewable energy sources, demand response
strategies, and hybrid electric vehicles. This poses a challenge
for grid operators to operate the power system in a stable and
secure manner. Therefore, power system state estimation is
a critical process in modern power systems, which is highly
beneficial for several operational decision-making problems
in power systems such as unit commitment, economic load
dispatch, optimal power flow, network reconfiguration, and
security analysis [1]. State estimation involves estimating the
actual system state variables, such as voltage magnitudes and
phase angles, based on raw measurement data collected from
SCADA and PMUs. Grid operators need to have an accurate
estimation of the system states in order to ensure the stability,
reliability, and efficiency of the system.

Weighted least squares (WLS) and weighted least absolute
value (WLAV) are traditional statistical techniques used for
state estimation, which employ squared error and absolute
error, respectively, to minimize measurement errors [2]. How-
ever, WLS and WLAV may take numerous iterations and

may not achieve convergence due to the high dynamics and
nonlinearity of the power systems. Thus, to reduce the likeli-
hood of flawed results and calculation time, machine learning
algorithms have been developed to estimate system states.

Applications of artificial neural networks (ANNs) are in-
creasingly popular in power systems. ANNs are able to achieve
accurate approximations based on appropriate training [3].
Multi-layer perceptron models are capable of comprehending
the intricate connections between the input/output dataset of
a system, and upon being trained effectively, they are applied
to new datasets in real-time [4]. A hybrid model combined an
ANN and a statistical method in [5] for estimating the states
of a power system. An ANN was utilized to map the input
variables to a point in the vicinity of the actual hidden states,
and this information was then used as input for the statistical
method, thereby resulting in enhanced convergence. In [6], a
long-short-term memory (LSTM) neural network was applied
in place of a neural network to estimate successive power
system states. Wang et al. [7] estimated system states using
a physics-guided deep learning approach, wherein a series
of power flow equations is employed to verify the system
states estimated by deep neural networks for adherence to
the principles of physics. In [8], a deep ensemble learning
called Residual Neural Networks (ResNetD) was developed
to forecast states in real-time power system operation. Several
other data-driven techniques have been utilized for power
system state estimation in existing literature, including mod-
ified LSTM [9], conditional generative adversarial networks
(GAN) [10], auto-encoders [11], k-nearest neighbor [12], and
convolutional neural network (CNN) [13]. Due to the intricate
nature of the power system, measurement data is substantial
and is difficult to manage using a basic shallow neural network
[13]. Additionally, the computational efficiency of such neural
networks is low [14]. Therefore, machine learning applications
for power system state estimation should be encouraged.

This study proposes machine learning algorithms for power
system state estimation. Three machine learning algorithms,
namely ANN, Random Forest, and Extreme Gradient Boost-
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ing (XGBoost) algorithms, are applied to learn temporal
correlations among system states. The effectiveness of the
proposed data-driven state estimation techniques is evaluated
using the IEEE 14-bus and 30-bus systems. The simulation
results demonstrate the high effectiveness of machine learning
algorithms in state estimation.

II. STATE ESTIMATION

A. Preliminaries

Power system state estimation determines the system states
from raw measurements that may contain noise by minimizing
the error in measurement data. The measurement equation is
employed to calculate the system states as in (1) [1]:

z = h(x) + e (1)

where z is the measurement vector, x is the state vector, h is
a nonlinear function between measurement and state vectors,
and e is the noise vector in measurements.

The most commonly utilized approach for state estimation
has traditionally been the WLS approach with the Gauss-
Newton method. WLS approach determines the estimated state
vector by minimizing the following equation:

J(x) =
1

2
(x− h(x))TW (x− h(x)) (2)

where weight vector W is formulated by considering the
variance of the measurement errors. To obtain the solution,
the Gauss-Newton method is applied as follows:

x̂k+1 = x̂k +G(x̂k)
−1HT (x̂k)W [1−H(x̂k)] (3)

where H and G are defined as follows:

H(x̂k) =

[
∂h(x)

∂x

]
x=x̂k

(4)

G(x̂k) = HT (x̂k)WH(x̂k) (5)

B. Problem formulation

The task of power system state estimation using data-driven
approaches is to create a mapping between the provided set
of measurements (zt) and state variables (x̂k), which is given
as follows [8]:

x̂k = f(zt) (6)

where the measurement vector z includes the voltage magni-
tude V i

t , phase angle δit, active power injection P i
t and reactive

power injection Qi
t at the ith bus at time t, transmission line

loading Sl
t at the lth branch (connecting the ith bus and jth bus)

at time t. The estimated state vector x includes the voltage
magnitude V i

t and phase angle δit at the ith bus at time t,
wherein i varies from 1 to Nb for voltage magnitude and 2
to Nb for phase angle (phase angle at the 1st bus is taken as
reference) with Nb the total number of buses in the power
system.

The mapping function f involves weights that establish the
mapping between the input measurements and output states.
The aim of power system state estimation based on a machine
learning approach is to determine the weights that minimize

the difference between predicted and actual states. In contrast
to the conventional physical model, the machine learning
model uses measured data z as an input and state variable
x as an output.

III. METHODOLOGY

To map from the input measurements to output states, this
study proposes three machine learning algorithms, including
ANN, Random Forest, and XGBoost, which can be briefly
described in the following subsections.

A. ANN

ANNs are a powerful class of machine learning algorithms.
Typically, ANN is trained on a dataset of input features and
their corresponding target values. The input features are fed
into the input layer of the network, which passes them through
one or more hidden layers of neurons. Each neuron in the
hidden layer applies a nonlinear activation function to its input,
and the output of each neuron is passed on to the next layer
until the final output layer produces the predicted target value.
During training, the network adjusts its weights and biases to
minimize the discrepancy between the predicted target values
and the actual target values in the training dataset. This process
is typically done using optimizers such as gradient descent
and Adam. The capability of ANN regression to represent
intricate and non-linear relationships between target variables
and features is well known. Fig. 1 portrays the structure of a
typical ANN for a regression problem.

Fig. 1. The structure of ANN.

B. Random Forest

Random Forest is an ensemble learning approach that
merges numerous decision trees to generate predictions with
greater precision [15]. This algorithm builds a forest of deci-
sion trees, in which every tree is trained on a random subset
of the training data and a random subset of the features. By
using this strategy, overfitting can be reduced, and the ability
of the model to generalize can be enhanced. When making
a prediction, each decision tree in the forest generates an
independent prediction, and the final prediction is obtained by
averaging the predictions of all the trees. This approach results
in a more resilient and precise forecast than relying on a single
decision tree. Random Forest regression is particularly useful
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for handling high-dimensional data and nonlinear relationships
between features and target variables. The structure of a
Random Forest is presented in Fig. 2. The mathematical
equation of the Random Forest algorithm is defined as follows:

f̂B
RF (x) =

1

B

B∑
b=1

Tb(x) (7)

where B is the number of trees, x is the vector of input
variables, and Tb is a single regression tree formed based on
a subset of bootstrap samples and input variables.

Fig. 2. The structure of Random Forest.

C. XGBoost

XGBoost is a type of gradient-boosting algorithm that
combines multiple weak learners (decision trees) to make more
accurate predictions [16]. XGBoost creates a set of decision
trees iteratively, in which each tree is trained on the residuals
of the previous tree. This approach helps to reduce the bias and
variance of the model and improves its generalization ability.
XGBoost also uses a technique called gradient boosting, which
involves calculating the gradient of the loss function for the
predicted values and using it to update the model parameters
in each iteration. This helps to optimize the objective function
and improve the model’s performance. The general formula of
the XGBoost algorithm can be given as follows:

f(θ) = L(θ) + α(θ) (8)

L(θ) = l(x̂i, xi) (9)

α(θ) = γT +
1

2
∥ω∥2λ (10)

where f(θ) is the objective function, L(θ) is the loss function
between the predicted value x̂i and the actual value xi, α(θ)
is the regularization term, λ is the regulating parameter, ω is
the weight of leaves, T is the number of leaves of the tree,
and γ is the learning rate.

IV. SIMULATION RESULTS

A. Simulation Setup

Simulation data is created for the IEEE 14-bus and 30-
bus systems. The 14-bus system comprises 4 generators and
9 loads, while the 30-bus system has 6 generators and 24
loads. Dataset generation is referenced as [8], wherein the
actual load demand at each bus is multiplied by the normalized

load profile in [17] to achieve the load demand at each bus
at each time. Subsequently, AC power flow computation is
performed for load data at each time using MATPOWER
6.0 to obtain power flow results, including active power
injection at the reference bus, reactive power injections at
buses, voltage magnitude and phase angles at buses, and line
flows at branches. The obtained power flow results at each
time are used to form the measurement and state data. For the
14-bus and 30-bus systems, 64 and 110 measurements were
taken, respectively, as proposed in [8]. Meanwhile, the states
are represented by the voltage magnitudes and angles at buses,
with 28 and 60 states, respectively, wherein the voltage angle
of the reference bus is set to zero. The dataset contains 39444
samples, which are divided into two parts: training (76%) and
testing (24%). The machine learning models are coded using
the Python environment with the TensorFlow library.

B. Performance Evaluation Metrics

Two popular statistical metrics, the mean absolute error
(MAE) and the root mean square error (RMSE), are employed
to estimate the effectiveness of the machine learning algo-
rithms:

MAE =
1

NsNb

Ns∑
i=1

Nb∑
k=1

|x̂k − xk| (11)

RMSE =

√√√√ 1

NsNb

Ns∑
i=1

Nb∑
k=1

(x̂k − xk)2 (12)

where Ns is the total number of samples, Nb is the total num-
ber of buses, x̂k is the predicted state for voltage magnitude
or phase angle at the kth bus, and xk is the actual state for
voltage magnitude or phase angle at the kth bus.

C. Results and Discussion

The study examines and contrasts the effectiveness of three
machine learning algorithms for state estimation, and these
evaluations are conducted on the IEEE 14-bus and 30-bus sys-
tems. Fig. 3 and Fig. 4 depict the estimated voltage magnitudes
and phase angles by ANN, Random Forest, and XGBoost
models at different buses of 14-bus and 30-bus systems from
the 5000th to the 5050th testing sample. As shown in Fig. 3 and
Fig. 4, the states predicted by three machine learning models
closely approximate the actual states. Moreover, the voltage
phase angles estimated by the proposed algorithms strongly
resemble the actual value of the system state for both systems.

Table I shows a comparison of ANN, Random Forest, and
XGBoost models using MAE and RMSE for voltage magni-
tude estimation for 14-bus and 30-bus systems. Performance
comparisons of three models for voltage phase estimation are
presented in Table II. The lower values of the MAE and RMSE
indicators show a higher accuracy of an algorithm in state
estimation. Generally, all three models have low values for
MAE and RMSE metrics for voltage magnitude and phase
angle estimations.

From Table I, the ANN model yields an MAE of 0.00006
and RMSE of 0.00016 for voltage magnitude predictions for
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Fig. 3. Voltage magnitudes and phase angles estimated by different algorithms at the 10th bus of 14-bus system for the 5000th to 5050th testing sample.

Fig. 4. Voltage magnitudes and phase angles estimated by different algorithms at the 10th bus of 30-bus system for the 5000th to 5050th testing sample.
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TABLE I
COMPARISON OF ANN, RANDOM FOREST, AND XGBOOST BASED ON
MAE AND RMSE METRICS FOR VOLTAGE MAGNITUDE ESTIMATION

Algorithms IEEE 14-bus system IEEE 30-bus system
MAE RMSE MAE RMSE

ANN 0.00006 0.00016 0.00009 0.00016
Random Forest 0.00039 0.00061 0.00083 0.00124

XGBoost 0.00011 0.00016 0.00014 0.00019

TABLE II
COMPARISON OF ANN, RANDOM FOREST, AND XGBOOST BASED ON

MAE AND RMSE METRICS FOR VOLTAGE PHASE ESTIMATION

Algorithms IEEE 14-bus system IEEE 30-bus system
MAE RMSE MAE RMSE

ANN 0.01351 0.02174 0.01075 0.01669
Random Forest 0.00746 0.01138 0.01632 0.02461

XGBoost 0.00978 0.01657 0.01207 0.01832

the 14-bus system, which is the best performance among the
three algorithms. However, with an MAE of 0.00746 and
an RMSE of 0.01138, the Random Forest model has lower
MAE and RMSE values than other models for voltage phase
prediction, as can be seen in Table II. Hence, the ANN model
offers the most accurate estimations for voltage magnitudes,
while the Random Forest model provides the best estimations
for voltage angles for the 14-bus system.

For the 30-bus system, the ANN model outperforms the
Random Forest and XGBoost models for both voltage magni-
tudes and phase angle estimation. Meanwhile, the Random
Forest model has the worst performance among the three
proposed models. It is worth noting that these highly accurate
estimates are obtained without hyperparameter adjustment for
the models. Therefore, machine learning models are very
efficient and well-suited for state estimation.

V. CONCLUSION

This study proposes three machine learning algorithms,
namely ANN, Random Forest, and XGboost algorithms, for
power system state estimation. In contrast to traditional tech-
niques that provide a snapshot estimate, machine learning
algorithms fully utilize their learning ability to model the
temporal correlations between system states. Three distinct
machine learning models were trained and evaluated on the
IEEE 14-bus and 30-bus systems. From the obtained results,
all three machine learning algorithms show high accuracy and
robustness in estimating the states of the system. Among the
three proposed algorithms, ANN models achieve better results
than other algorithms in terms of MAE and RMSE. It can
be inferred that the application of machine learning in state
estimation holds the potential for implementation in actual
control centers.
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