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Abstract—As energy demand increases rapidly, short-term
load forecasting is becoming progressively vital in power system
dispatch and demand response. This study proposes a short-term
load forecasting approach for the power system in Vietnam. In
this regard, a gated recurrent unit-based deep learning model
is applied to use the historical load sequences to forecast the
single-step and multi-step ahead values of the load consumption.
The hourly load consumption dataset is provided by Ho Chi
Minh City Power Corporation (EVNHCMC). Simulation results
prove the effectiveness of the developed prediction algorithm for
short-term load forecasting, especially for multi-step forecasting.

Keywords—Short-term load forecasting, deep learning, gated
recurrent unit, long short-term memory

I. INTRODUCTION

Short-term load forecasting is an indispensable aspect of
energy management, which involves predicting the future load
demand for a given period, typically ranging from a few
minutes to a few weeks ahead. For power grids to remain
stable and reliable, it is crucial to have accurate short-term
load forecasting that helps utilities to make informed decisions
regarding the generation, transmission, and distribution of
electricity. Short-term load forecasting has also become more
challenging due to the increasing penetration of renewable
energy sources, which are highly variable and difficult to
predict.

Short-term load forecasting has been a topic of interest for
several decades, and various techniques have been developed
to address this problem. Conventionally, simple statistical
methods, such as regression analysis [1], autoregressive inte-
grated moving normal (ARIMA) [2], and exponential smooth-
ing [3], were commonly used for load forecasting. However,
with the increasing complexity of the power system and
the availability of large amounts of data, machine learning
algorithms have been developed, such as artificial neural
network (ANN) [4]–[6], support vector machine (SVR) [7],
and fuzzy logic [8]. However, it has been recognized that
deep neural networks (DNNs) are more efficient for time series
predictions compared to shallow ANNs [9]. In Ref. [10], the

authors applied echo state networks (ESN) with a recursive
multi-step approach for short-term forecasting. Forecasting
methods were proposed in [11] and [12] using long short-
term memory (LSTM) neural network to predict the short-term
aggregated load. Chen et al. [13] utilized a hybrid of DNN and
shallow ANN to predict a day-ahead load profile. Sun et al.
[14] applied a forecasting model based on a wavelet neural
network (WNN) that takes historical load data and weather
forecast variables as input features. A multistage ANN-based
short-term load forecaster was suggested based on temperature
forecast data in [15].

Motivated by the literature review, this study proposes short-
term load forecasting models based on the gated recurrent
unit (GRU) architecture. Single-step and multi-step forecast-
ing strategies are both considered in this study. The model
incorporates a rolling time-index series as input features,
consisting of the hour index, weekday/weekend index, and
month index. This inclusion of features is demonstrated to
result in a significant improvement in forecasting accuracy.
Moreover, the study suggests that utilizing a specific sequence
length could lead to higher prediction accuracy. The study also
compares the proposed GRU model with other models using
error metrics, which shows that the GRU model has higher
accuracy and better performance than compared models.

II. GATED RECURRENT UNIT NETWORK

A gated recurrent unit (GRU) neural network (NN) is
a variant of well-known long short-term memory (LSTM)
architecture, which was introduced by Cho et al. in 2014 [16].
GRU has a reduced number of parameters, which leads to
a shorter training time when compared to traditional LSTM.
GRUs are made up of units, which are essentially simplified
versions of LSTM cells. Each unit contains two gates: a reset
gate and an update gate. Fig. 1 depicts the architecture of
the GRU unit. The reset gate of the GRU network adapts to
incorporating new input information with the previous state
memory. Meanwhile, the update gate regulates the retention
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of the previous state memory. The mathematical operation of
the GRU network is formulated as follows:

rt = σ(αrxt + βrht−1 + br) (1)

zt = σ(αzxt + βzht−1 + bz) (2)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (3)

h̃t = tanh(αhxt + βh(rt ⊙ ht−1) + bh) (4)

yt = g(ht) (5)

where xt is the input vector; rt and zt are the reset gate and
update gate, respectively; α and β are network parameters; b
is the bias of network, h̃t and ht are the candidate hidden state
and the current hidden state, respectively; σ and tanh are the
non-linear activation function; ⊙ represents an element-wise
multiplication, and yt represents the output of GRU.

Fig. 1. The architecture of GRU.

III. GRU-BASED PREDICTION MODEL

The proposed load forecasting method can be briefly de-
scribed as follows:

A. Data collection and preprocessing

Historical data related to load consumption is gathered from
the electric power company, followed by the examination of
null values to verify the accuracy and reliability of the data.

B. Feature generation

New features are generated including the hour index {H =
1, 2, ..., 24}, weekday index {W = 0, 1, 2}, and month index
{M = 1, 2, ..., 12}. The weekday index distinguishes week-
days and weekends, as well as makes a distinction between
Saturdays and Sundays. In particular, for a given hour, the
value of ‘weekend’ is equal to ‘0’, if the hour is on a weekday,
equal to ‘1’ if the hour is on a Saturday, and equal to ‘2’ if
the hour is on a Sunday.

C. Normalization

The min-max method is used to normalize features as
follows:

xnorm =
x− xmin

xmax − xmin
(6)

D. Constructing Time Series

The input sequence length T is defined. Subsequently, the
normalized input feature sequences are structured as follows:
the hourly electricity load of past T timesteps is L =
{lt, lt−1, ..., lt−T } ∈ RT ; the hour index of past T timesteps is
H = {ht, ht−1, ..., ht−T } ∈ RH ; the weekday index of past T
timesteps is W = {wt, wt−1, ..., wt−T } ∈ RW ; the month in-
dex of past T timesteps is M = {mt,mt−1, ...,mt−T } ∈ RM .
The normalized input features are transformed in the shape of
a matrix: [samples, timesteps, features].

E. Building Forecasting Model

The DNN is proposed by stacking two GRU layers for short-
term load forecasting, each GRU layer contains 100 neutrons
with an activation function of rectified linear unit (ReLU).
The GRU-based DNN model is trained with Adam optimizer
to minimize the loss function of mean square error (MSE).

• For the single-step forecasting model, the output layer
generates a single output value Yt = {lt+1}, which
represents the forecasted load for the next time step.

• For the multi-step forecasting model, the output
layer generates the forecasted output sequence Yt =
{lt+1, lt+2, ..., lt+N} ∈ RT , which represents the fore-
casted load for the next N time steps.

IV. SIMULATION RESULTS

A. Simulation Setup

The proposed short-term load forecasting is applied to the
power system in Vietnam. In this study, the historical time
series data of the hourly load consumption of Ho Chi Minh
City for 2011–2012 is provided by Ho Chi Minh City Power
Corporation (EVNHCMC). Fig. 2 depicts the electricity con-
sumption profile under study, whereas the maximum electricity
load demand is 2876.83 MW. The dataset has 17544 samples
with one-hour sampling. For the training process of the model,
data from the first 16 months (January 2011 – April 2012) are
used, while data from the next 4 months (May 2012 – August
2012) are used for validation. Furthermore, the performance
of the proposed forecasting model is tested on data from the
last four months of 2012 (September 2012 – December 2012).
Simulation results and relevant analysis are presented in the
next subsections.

Fig. 2. Hourly consumption data of Ho Chi Minh City for 2011–2012.
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B. Performance Evaluation Metrics

In this study, forecasting results are evaluated using the
mean absolute error (MAE), mean absolute percentage error
(MAPE), and root mean square error (RMSE) as follows:

MAE =
1

N

N∑
i=1

|yi − ŷi| (7)

MAPE =
1

N

N∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (8)

RMSE =
1

N

N∑
i=1

(yi − ŷi)
2 (9)

where yn is the actual value, ŷn is the predicted value, and N
is the size of the data samples.

C. Single-step forecasting results

The effectiveness of the forecasting model can be impacted
by the length of the input sequence, which refers to the
number of time steps in the look-back time window. Hence,
the forecasting model is tested using various input sequence
lengths, as given in Table I. Table I shows that the smallest
error is obtained by using 72-step sequences. Therefore, the
proposed GRU NN is trained and tested using look-back
windows of 72 steps. The accuracy of the predictions over
different months is shown in Table II. According to Table II,
the smallest forecasting error occurs in November.

TABLE I
SINGLE-STEP PREDICTION RESULTS FOR DIFFERENT INPUT SEQUENCE

LENGTHS

Timestep MAE (MW) MAPE (%) RMSE (MW)
2 66.1248 3.2091 94.7110
4 33.7533 1.6866 49.2690
8 30.6031 1.5283 44.5426
12 31.6399 1.5785 46.7834
16 31.5746 1.5767 46.1332
20 30.5898 1.5502 44.8362
24 29.6143 1.4821 44.1199
48 33.6938 1.6587 48.0898
72 29.3431 1.4647 43.3596

120 30.7914 1.5335 45.2419
144 30.2482 1.5264 44.4299
168 30.4350 1.5033 44.9432

Fig. 3 illustrates the single-step forecasting results for the
last four months of 2012. In addition, single-step forecasting
results for typical days of these months are shown in Fig. 4.
The results from Table II, Fig. 3, and Fig. 4 show that the pre-
dicted load closely aligns with the actual data, demonstrating
the effectiveness of the proposed method in providing accurate
single-step load forecasting.

D. Multi-step forecasting results

For the multi-step forecasting model, the proposed GRU
NN is used to predict the future 24-hour horizon. Table III
presents a comparison of the performance of the multi-step
forecasting model based on varying input sequence lengths. As

Fig. 3. Single-step prediction results for the last four months of 2012.

Fig. 4. Single-step prediction results for typical days of the last four months
of 2012.
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Fig. 5. Multi-step prediction results for the last four months of 2012.

TABLE II
SINGLE-STEP PREDICTION RESULTS FOR THE LAST FOUR MONTHS OF

2012

Timestep MAE (MW) MAPE (%) RMSE (MW)
September 30.9769 1.6517 43.1155

October 29.4401 1.4867 49.4115
November 28.3603 1.3364 39.0328
December 28.6191 1.3863 41.0400

TABLE III
MULTI-STEP PREDICTION RESULTS FOR DIFFERENT INPUT SEQUENCE

LENGTHS

Timestep MAE (MW) MAPE (%) RMSE (MW)
24 67.5189 3.4688 96.6806
48 64.7490 3.2270 90.3958
72 67.2280 3.3117 91.5923

120 62.3680 3.1541 87.7012
144 70.9385 3.5786 95.9915
168 73.6020 3.6921 96.7054

Fig. 6. Multi-step prediction results for typical days of the last four months
of 2012.

TABLE IV
MULTI-STEP PREDICTION RESULTS FOR THE LAST FOUR MONTHS OF 2012

Timestep MAE (MW) MAPE (%) RMSE (MW)
September 79.2788 4.3428 107.9166

October 54.8205 2.7612 73.4464
November 53.3109 2.5176 70.3057
December 62.3378 3.0144 93.9439

shown in Table III, multi-step forecasting attains the greatest
precision when using 120-hour input sequences to predict 24-
hour horizons. Table IV presents the accuracy of predictions
for 24-hour horizons for the last four months of 2012. Similar
to the forecast results from the single-step ahead model, the
highest forecasting accuracy is achieved in November 2012.
Fig. 5 illustrates 24-hour ahead predictions for the last four
months of 2012. Additionally, Fig. 6 displays 24-hour ahead
predictions for typical days of these months. From the obtained
results, the predicted values are relatively consistent with the
actual data. Thus, the proposed method is also effective for
multi-step load forecasting.

E. Performance comparisons

To benchmark the GRU NN-based forecasting models, the
forecasted results of GRU NN are compared with those of
LSTM and CNN based on MAE, MAPE, and RMSE metrics.
A look-back window of 120 steps is utilized for implement-
ing the multi-step ahead model. The error metrics obtained
from the GRU, LSTM, and CNN are presented in Table V.
Observing the error metric values indicates that the GRU NN
yields better results than LSTM and CNN. It can be concluded
that the proposed GRU NN surpasses LSTM and CNN in
predicting accuracy, which confirms the effectiveness of the
proposed methodology for short-term load forecasting.

V. CONCLUSION

This study proposed and assessed an effective short-term
load forecasting method using GRU NN with single-step
and multi-step forecasting models. The proposed method was
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TABLE V
FORECASTING PERFORMANCE COMPARISON

Methods Single-step forecasting Multi-step forecasting
MAE MAPE RMSE MAE MAPE RMSE
(MW) (%) (MW) (MW) (%) (MW)

GRU 29.34 1.47 43.36 62.37 3.15 87.70
LSTM 30.86 1.56 45.66 63.77 3.26 91.19
CNN 31.05 1.58 46.06 64.55 3.24 90.31

applied to the historical load data of the power system in
Vietnam. From the forecasting results, GRU NN successfully
predicts the load with low error values for both a future
one-hour period (single-step forecasting) and a future 24-hour
period (multi-step forecasting). The study also examined the
influence of the input sequence length on the precision of
the forecasting model. The analysis indicated that a specific
sequence length could yield the greatest accuracy. Further, the
forecasting accuracy of the proposed method was compared
with LSTM and CNN using error metrics. Based on the
analysis of the results, the GRU NN performed well compared
to LSTM and CNN on the given dataset. Thus, the developed
GRU NN is an effective approach for short-term load fore-
casting with high accuracy in power systems.
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